E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 103428r
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
103428.s2 |
103428r1 |
[0,0,0,−4796220,−4042890839] |
216727177216000/2738853 |
154197150496738128 |
[2] |
1935360 |
2.4444
|
Γ0(N)-optimal |
103428.s3 |
103428r2 |
[0,0,0,−4666935,−4271130578] |
−12479332642000/1526829993 |
−1375366019065964460288 |
[2] |
3870720 |
2.7909
|
|
103428.s1 |
103428r3 |
[0,0,0,−7534020,1074440653] |
840033089536000/477272151837 |
26870374505207815023312 |
[2] |
5806080 |
2.9937
|
|
103428.s4 |
103428r4 |
[0,0,0,29829345,8554586326] |
3258571509326000/1920843121977 |
−1730292416336980668287232 |
[2] |
11612160 |
3.3402
|
|
The elliptic curves in class 103428r have
rank 0.
The elliptic curves in class 103428r do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.