Properties

Label 103428r
Number of curves 44
Conductor 103428103428
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 103428r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103428.s2 103428r1 [0,0,0,4796220,4042890839][0, 0, 0, -4796220, -4042890839] 216727177216000/2738853216727177216000/2738853 154197150496738128154197150496738128 [2][2] 19353601935360 2.44442.4444 Γ0(N)\Gamma_0(N)-optimal
103428.s3 103428r2 [0,0,0,4666935,4271130578][0, 0, 0, -4666935, -4271130578] 12479332642000/1526829993-12479332642000/1526829993 1375366019065964460288-1375366019065964460288 [2][2] 38707203870720 2.79092.7909  
103428.s1 103428r3 [0,0,0,7534020,1074440653][0, 0, 0, -7534020, 1074440653] 840033089536000/477272151837840033089536000/477272151837 2687037450520781502331226870374505207815023312 [2][2] 58060805806080 2.99372.9937  
103428.s4 103428r4 [0,0,0,29829345,8554586326][0, 0, 0, 29829345, 8554586326] 3258571509326000/19208431219773258571509326000/1920843121977 1730292416336980668287232-1730292416336980668287232 [2][2] 1161216011612160 3.34023.3402  

Rank

sage: E.rank()
 

The elliptic curves in class 103428r have rank 00.

Complex multiplication

The elliptic curves in class 103428r do not have complex multiplication.

Modular form 103428.2.a.r

sage: E.q_eigenform(10)
 
q+4q7+q172q19+O(q20)q + 4 q^{7} + q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.