Properties

Label 103428r
Number of curves $4$
Conductor $103428$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 103428r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103428.s2 103428r1 \([0, 0, 0, -4796220, -4042890839]\) \(216727177216000/2738853\) \(154197150496738128\) \([2]\) \(1935360\) \(2.4444\) \(\Gamma_0(N)\)-optimal
103428.s3 103428r2 \([0, 0, 0, -4666935, -4271130578]\) \(-12479332642000/1526829993\) \(-1375366019065964460288\) \([2]\) \(3870720\) \(2.7909\)  
103428.s1 103428r3 \([0, 0, 0, -7534020, 1074440653]\) \(840033089536000/477272151837\) \(26870374505207815023312\) \([2]\) \(5806080\) \(2.9937\)  
103428.s4 103428r4 \([0, 0, 0, 29829345, 8554586326]\) \(3258571509326000/1920843121977\) \(-1730292416336980668287232\) \([2]\) \(11612160\) \(3.3402\)  

Rank

sage: E.rank()
 

The elliptic curves in class 103428r have rank \(0\).

Complex multiplication

The elliptic curves in class 103428r do not have complex multiplication.

Modular form 103428.2.a.r

sage: E.q_eigenform(10)
 
\(q + 4 q^{7} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.