E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 1045.b
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1045.b1 |
1045b3 |
[1,−1,0,−1016789,−346894930] |
116256292809537371612841/15216540068579856875 |
15216540068579856875 |
[4] |
17664 |
2.4090
|
|
1045.b2 |
1045b2 |
[1,−1,0,−982414,−374539305] |
104859453317683374662841/2223652969140625 |
2223652969140625 |
[2,2] |
8832 |
2.0624
|
|
1045.b3 |
1045b1 |
[1,−1,0,−982409,−374543312] |
104857852278310619039721/47155625 |
47155625 |
[2] |
4416 |
1.7158
|
Γ0(N)-optimal |
1045.b4 |
1045b4 |
[1,−1,0,−948119,−401927292] |
−94256762600623910012361/15323275604248046875 |
−15323275604248046875 |
[2] |
17664 |
2.4090
|
|
The elliptic curves in class 1045.b have
rank 1.
The elliptic curves in class 1045.b do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.