Properties

Label 104544o1
Conductor 104544104544
Discriminant 1.428×1014-1.428\times 10^{14}
j-invariant 13824 -13824
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x326136x1724976y^2=x^3-26136x-1724976 Copy content Toggle raw display (homogenize, simplify)
y2z=x326136xz21724976z3y^2z=x^3-26136xz^2-1724976z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x326136x1724976y^2=x^3-26136x-1724976 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -26136, -1724976])
 
gp: E = ellinit([0, 0, 0, -26136, -1724976])
 
magma: E := EllipticCurve([0, 0, 0, -26136, -1724976]);
 
oscar: E = elliptic_curve([0, 0, 0, -26136, -1724976])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(792,21780)(792, 21780)1.88470299594199122082408587911.8847029959419912208240858791\infty

Integral points

(792,±21780)(792,\pm 21780) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  104544 104544  = 25331122^{5} \cdot 3^{3} \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  142826025627648-142826025627648 = 121239116-1 \cdot 2^{12} \cdot 3^{9} \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13824 -13824  = 12933-1 \cdot 2^{9} \cdot 3^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.46564900278809323907240228061.4656490027880932390724022806
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.2504050306721196109222355575-1.2504050306721196109222355575
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.22629438553091671.2262943855309167
Szpiro ratio: σm\sigma_{m} ≈ 3.65521025678796763.6552102567879676

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.88470299594199122082408587911.8847029959419912208240858791
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.186962986347073146394456103800.18696298634707314639445610380
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 232 2\cdot3\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.22843640598308432302041444534.2284364059830843230204144453
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.228436406L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1869631.88470312124.228436406\displaystyle 4.228436406 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.186963 \cdot 1.884703 \cdot 12}{1^2} \approx 4.228436406

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 104544.2.a.i

q2q53q7+3q132q17+3q19+O(q20) q - 2 q^{5} - 3 q^{7} + 3 q^{13} - 2 q^{17} + 3 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 311040
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive 1 5 12 0
33 33 IVIV^{*} additive -1 3 9 0
1111 22 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Nn 3.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[89, 0, 0, 89], [67, 0, 66, 67], [111, 88, 44, 111], [100, 33, 99, 67], [89, 77, 11, 34], [98, 55, 77, 98], [1, 66, 66, 1], [1, 0, 12, 1], [121, 12, 120, 121], [119, 0, 0, 131]]
 
GL(2,Integers(132)).subgroup(gens)
 
Gens := [[89, 0, 0, 89], [67, 0, 66, 67], [111, 88, 44, 111], [100, 33, 99, 67], [89, 77, 11, 34], [98, 55, 77, 98], [1, 66, 66, 1], [1, 0, 12, 1], [121, 12, 120, 121], [119, 0, 0, 131]];
 
sub<GL(2,Integers(132))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 132=22311 132 = 2^{2} \cdot 3 \cdot 11 , index 2424, genus 11, and generators

(890089),(6706667),(1118844111),(100339967),(89771134),(98557798),(166661),(10121),(12112120121),(11900131)\left(\begin{array}{rr} 89 & 0 \\ 0 & 89 \end{array}\right),\left(\begin{array}{rr} 67 & 0 \\ 66 & 67 \end{array}\right),\left(\begin{array}{rr} 111 & 88 \\ 44 & 111 \end{array}\right),\left(\begin{array}{rr} 100 & 33 \\ 99 & 67 \end{array}\right),\left(\begin{array}{rr} 89 & 77 \\ 11 & 34 \end{array}\right),\left(\begin{array}{rr} 98 & 55 \\ 77 & 98 \end{array}\right),\left(\begin{array}{rr} 1 & 66 \\ 66 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 121 & 12 \\ 120 & 121 \end{array}\right),\left(\begin{array}{rr} 119 & 0 \\ 0 & 131 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[132])K:=\Q(E[132]) is a degree-25344002534400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/132Z)\GL_2(\Z/132\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 3267=33112 3267 = 3^{3} \cdot 11^{2}
33 additive 22 176=2411 176 = 2^{4} \cdot 11
1111 additive 6262 864=2533 864 = 2^{5} \cdot 3^{3}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 104544o consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 864i1, its twist by 4444.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.108.1 Z/2Z\Z/2\Z not in database
66 6.0.34992.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.2098454003712.12 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1616 deg 16 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord ord add ord ord ord ord ord ss ord ord ord ord
λ\lambda-invariant(s) - - 1 1 - 1 1 1 1 1 1,1 1 3 1 1
μ\mu-invariant(s) - - 0 0 - 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.