Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1058c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1058.a2 | 1058c1 | \([1, 0, 1, 0, 2]\) | \(23/4\) | \(-2116\) | \([]\) | \(80\) | \(-0.68263\) | \(\Gamma_0(N)\)-optimal |
1058.a1 | 1058c2 | \([1, 0, 1, -115, 462]\) | \(-313994137/64\) | \(-33856\) | \([]\) | \(240\) | \(-0.13332\) |
Rank
sage: E.rank()
The elliptic curves in class 1058c have rank \(2\).
Complex multiplication
The elliptic curves in class 1058c do not have complex multiplication.Modular form 1058.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.