Properties

Label 1058c
Number of curves $2$
Conductor $1058$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1058c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1058.a2 1058c1 \([1, 0, 1, 0, 2]\) \(23/4\) \(-2116\) \([]\) \(80\) \(-0.68263\) \(\Gamma_0(N)\)-optimal
1058.a1 1058c2 \([1, 0, 1, -115, 462]\) \(-313994137/64\) \(-33856\) \([]\) \(240\) \(-0.13332\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1058c have rank \(2\).

Complex multiplication

The elliptic curves in class 1058c do not have complex multiplication.

Modular form 1058.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 2 q^{6} - 2 q^{7} - q^{8} + q^{9} + 3 q^{10} - 6 q^{11} - 2 q^{12} - q^{13} + 2 q^{14} + 6 q^{15} + q^{16} - 6 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.