Properties

Label 1058c
Number of curves 22
Conductor 10581058
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1058c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1058.a2 1058c1 [1,0,1,0,2][1, 0, 1, 0, 2] 23/423/4 2116-2116 [][] 8080 0.68263-0.68263 Γ0(N)\Gamma_0(N)-optimal
1058.a1 1058c2 [1,0,1,115,462][1, 0, 1, -115, 462] 313994137/64-313994137/64 33856-33856 [][] 240240 0.13332-0.13332  

Rank

sage: E.rank()
 

The elliptic curves in class 1058c have rank 22.

Complex multiplication

The elliptic curves in class 1058c do not have complex multiplication.

Modular form 1058.2.a.c

sage: E.q_eigenform(10)
 
qq22q3+q43q5+2q62q7q8+q9+3q106q112q12q13+2q14+6q15+q166q17q182q19+O(q20)q - q^{2} - 2 q^{3} + q^{4} - 3 q^{5} + 2 q^{6} - 2 q^{7} - q^{8} + q^{9} + 3 q^{10} - 6 q^{11} - 2 q^{12} - q^{13} + 2 q^{14} + 6 q^{15} + q^{16} - 6 q^{17} - q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.