Properties

Label 10608d2
Conductor 1060810608
Discriminant 567169364736-567169364736
j-invariant 21816369843682215505331 \frac{2181636984368}{2215505331}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2+1716x24336y^2=x^3-x^2+1716x-24336 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z+1716xz224336z3y^2z=x^3-x^2z+1716xz^2-24336z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+138969x17324010y^2=x^3+138969x-17324010 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, 1716, -24336])
 
gp: E = ellinit([0, -1, 0, 1716, -24336])
 
magma: E := EllipticCurve([0, -1, 0, 1716, -24336]);
 
oscar: E = elliptic_curve([0, -1, 0, 1716, -24336])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(65,598)(65, 598)2.36842805197796302656323690682.3684280519779630265632369068\infty
(13,0)(13, 0)0022

Integral points

(13,0) \left(13, 0\right) , (65,±598)(65,\pm 598) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  10608 10608  = 24313172^{4} \cdot 3 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  567169364736-567169364736 = 1283313617-1 \cdot 2^{8} \cdot 3^{3} \cdot 13^{6} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  21816369843682215505331 \frac{2181636984368}{2215505331}  = 2433136171514732^{4} \cdot 3^{-3} \cdot 13^{-6} \cdot 17^{-1} \cdot 5147^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.942189039413263162669528369880.94218903941326316266952836988
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.480090919039966289724706955580.48009091903996628972470695558
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92208846429448080.9220884642944808
Szpiro ratio: σm\sigma_{m} ≈ 3.66327993151881563.6632799315188156

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.36842805197796302656323690682.3684280519779630265632369068
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.500217551972391927162538323650.50021755197239192716253832365
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 21(23)1 2\cdot1\cdot( 2 \cdot 3 )\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.55418784654947306677403479893.5541878465494730667740347989
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.554187847L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5002182.36842812223.554187847\displaystyle 3.554187847 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.500218 \cdot 2.368428 \cdot 12}{2^2} \approx 3.554187847

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   10608.2.a.c

qq32q5+2q7+q9+q13+2q15+q17+O(q20) q - q^{3} - 2 q^{5} + 2 q^{7} + q^{9} + q^{13} + 2 q^{15} + q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9216
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I0I_0^{*} additive 1 4 8 0
33 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1313 66 I6I_{6} split multiplicative -1 1 6 6
1717 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [665, 1990, 1988, 663], [2649, 4, 2648, 5], [1094, 1, 779, 0], [613, 4, 1226, 9], [886, 1, 883, 0]]
 
GL(2,Integers(2652)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [665, 1990, 1988, 663], [2649, 4, 2648, 5], [1094, 1, 779, 0], [613, 4, 1226, 9], [886, 1, 883, 0]];
 
sub<GL(2,Integers(2652))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2652=2231317 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17 , index 1212, genus 00, and generators

(1041),(34811),(1225),(1401),(66519901988663),(2649426485),(109417790),(613412269),(88618830)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 665 & 1990 \\ 1988 & 663 \end{array}\right),\left(\begin{array}{rr} 2649 & 4 \\ 2648 & 5 \end{array}\right),\left(\begin{array}{rr} 1094 & 1 \\ 779 & 0 \end{array}\right),\left(\begin{array}{rr} 613 & 4 \\ 1226 & 9 \end{array}\right),\left(\begin{array}{rr} 886 & 1 \\ 883 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2652])K:=\Q(E[2652]) is a degree-788363476992788363476992 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2652Z)\GL_2(\Z/2652\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 51=317 51 = 3 \cdot 17
33 nonsplit multiplicative 44 272=2417 272 = 2^{4} \cdot 17
1313 split multiplicative 1414 816=24317 816 = 2^{4} \cdot 3 \cdot 17
1717 split multiplicative 1818 624=24313 624 = 2^{4} \cdot 3 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 10608d consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 5304l2, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(51)\Q(\sqrt{-51}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.8619.2 Z/4Z\Z/4\Z not in database
88 8.0.193220905761.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.748177108992.8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord ord ss split split ss ss ord ord ss ord ord ord
λ\lambda-invariant(s) - 1 1 1 3,1 2 2 1,1 1,1 1 1 1,1 1 1 1
μ\mu-invariant(s) - 0 0 0 0,0 0 0 0,0 0,0 0 0 0,0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.