Properties

Label 10608f
Number of curves 22
Conductor 1060810608
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 10608f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.n1 10608f1 [0,1,0,424,3140][0, 1, 0, -424, 3140] 8251733668/2327138251733668/232713 238298112238298112 [2][2] 71687168 0.386240.38624 Γ0(N)\Gamma_0(N)-optimal
10608.n2 10608f2 [0,1,0,96,10836][0, 1, 0, 96, 10836] 47279806/2464967747279806/24649677 50482538496-50482538496 [2][2] 1433614336 0.732810.73281  

Rank

sage: E.rank()
 

The elliptic curves in class 10608f have rank 22.

Complex multiplication

The elliptic curves in class 10608f do not have complex multiplication.

Modular form 10608.2.a.f

sage: E.q_eigenform(10)
 
q+q32q54q7+q96q11q132q15q178q19+O(q20)q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} - 6 q^{11} - q^{13} - 2 q^{15} - q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.