Properties

Label 10608f
Number of curves $2$
Conductor $10608$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 10608f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.n1 10608f1 \([0, 1, 0, -424, 3140]\) \(8251733668/232713\) \(238298112\) \([2]\) \(7168\) \(0.38624\) \(\Gamma_0(N)\)-optimal
10608.n2 10608f2 \([0, 1, 0, 96, 10836]\) \(47279806/24649677\) \(-50482538496\) \([2]\) \(14336\) \(0.73281\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10608f have rank \(2\).

Complex multiplication

The elliptic curves in class 10608f do not have complex multiplication.

Modular form 10608.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} - 6 q^{11} - q^{13} - 2 q^{15} - q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.