Properties

Label 10608l4
Conductor 1060810608
Discriminant 9005835571290058355712
j-invariant 16183833494887947613 \frac{161838334948}{87947613}
CM no
Rank 00
Torsion structure Z/4Z\Z/{4}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x21144x4060y^2=x^3+x^2-1144x-4060 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z1144xz24060z3y^2z=x^3+x^2z-1144xz^2-4060z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x392691x2681694y^2=x^3-92691x-2681694 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -1144, -4060])
 
gp: E = ellinit([0, 1, 0, -1144, -4060])
 
magma: E := EllipticCurve([0, 1, 0, -1144, -4060]);
 
oscar: E = elliptic_curve([0, 1, 0, -1144, -4060])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/4Z\Z/{4}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(16,102)(-16, 102)0044

Integral points

(16,±102)(-16,\pm 102), (35,0) \left(35, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  10608 10608  = 24313172^{4} \cdot 3 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  9005835571290058355712 = 21034131742^{10} \cdot 3^{4} \cdot 13 \cdot 17^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  16183833494887947613 \frac{161838334948}{87947613}  = 2234131174343332^{2} \cdot 3^{-4} \cdot 13^{-1} \cdot 17^{-4} \cdot 3433^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.792873921738411943991072062720.79287392173841194399107206272
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.215251271271790852810045294840.21525127127179085281004529484
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93419094080080480.9341909408008048
Szpiro ratio: σm\sigma_{m} ≈ 3.53220960605984673.5322096060598467

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.875556002499760959581545557450.87555600249976095958154555745
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 2222122 2^{2}\cdot2^{2}\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.50222400999904383832618222983.5022240099990438383261822298
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.502224010L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8755561.00000064423.502224010\displaystyle 3.502224010 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.875556 \cdot 1.000000 \cdot 64}{4^2} \approx 3.502224010

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   10608.2.a.r

q+q32q5+4q7+q9+4q11+q132q15+q17+4q19+O(q20) q + q^{3} - 2 q^{5} + 4 q^{7} + q^{9} + 4 q^{11} + q^{13} - 2 q^{15} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 12288
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I2I_{2}^{*} additive 1 4 10 0
33 44 I4I_{4} split multiplicative -1 1 4 4
1313 11 I1I_{1} split multiplicative -1 1 1 1
1717 44 I4I_{4} split multiplicative -1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.12.0.7

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[667, 666, 2002, 4651], [4904, 3, 413, 2], [1, 0, 8, 1], [7, 6, 5298, 5299], [1, 8, 0, 1], [1, 4, 4, 17], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [4637, 4640, 1966, 4635], [1873, 8, 2188, 33]]
 
GL(2,Integers(5304)).subgroup(gens)
 
Gens := [[667, 666, 2002, 4651], [4904, 3, 413, 2], [1, 0, 8, 1], [7, 6, 5298, 5299], [1, 8, 0, 1], [1, 4, 4, 17], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [4637, 4640, 1966, 4635], [1873, 8, 2188, 33]];
 
sub<GL(2,Integers(5304))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 5304=2331317 5304 = 2^{3} \cdot 3 \cdot 13 \cdot 17 , index 4848, genus 00, and generators

(66766620024651),(490434132),(1081),(7652985299),(1801),(14417),(5297852969),(17698177233),(4637464019664635),(18738218833)\left(\begin{array}{rr} 667 & 666 \\ 2002 & 4651 \end{array}\right),\left(\begin{array}{rr} 4904 & 3 \\ 413 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 5298 & 5299 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 5297 & 8 \\ 5296 & 9 \end{array}\right),\left(\begin{array}{rr} 1769 & 8 \\ 1772 & 33 \end{array}\right),\left(\begin{array}{rr} 4637 & 4640 \\ 1966 & 4635 \end{array}\right),\left(\begin{array}{rr} 1873 & 8 \\ 2188 & 33 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[5304])K:=\Q(E[5304]) is a degree-31534539079683153453907968 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/5304Z)\GL_2(\Z/5304\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 13 13
33 split multiplicative 44 3536=241317 3536 = 2^{4} \cdot 13 \cdot 17
1313 split multiplicative 1414 816=24317 816 = 2^{4} \cdot 3 \cdot 17
1717 split multiplicative 1818 624=24313 624 = 2^{4} \cdot 3 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 10608l consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 5304k3, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/4Z\cong \Z/{4}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(13)\Q(\sqrt{13}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.0.2164032.3 Z/8Z\Z/8\Z not in database
88 8.0.316329754624.3 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.791432829997056.37 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 13 17
Reduction type add split split split
λ\lambda-invariant(s) - 3 1 1
μ\mu-invariant(s) - 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.