Properties

Label 10608m
Number of curves 22
Conductor 1060810608
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 10608m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.a1 10608m1 [0,1,0,1249,16580][0, -1, 0, -1249, -16580] 13478411517952/30431713478411517952/304317 48690724869072 [2][2] 38403840 0.397320.39732 Γ0(N)\Gamma_0(N)-optimal
10608.a2 10608m2 [0,1,0,1204,17876][0, -1, 0, -1204, -17876] 754612278352/127035441-754612278352/127035441 32521072896-32521072896 [2][2] 76807680 0.743900.74390  

Rank

sage: E.rank()
 

The elliptic curves in class 10608m have rank 00.

Complex multiplication

The elliptic curves in class 10608m do not have complex multiplication.

Modular form 10608.2.a.m

sage: E.q_eigenform(10)
 
qq32q52q7+q9+2q11q13+2q15q17+6q19+O(q20)q - q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + 2 q^{11} - q^{13} + 2 q^{15} - q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.