Properties

Label 10608m
Number of curves $2$
Conductor $10608$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 10608m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.a1 10608m1 \([0, -1, 0, -1249, -16580]\) \(13478411517952/304317\) \(4869072\) \([2]\) \(3840\) \(0.39732\) \(\Gamma_0(N)\)-optimal
10608.a2 10608m2 \([0, -1, 0, -1204, -17876]\) \(-754612278352/127035441\) \(-32521072896\) \([2]\) \(7680\) \(0.74390\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10608m have rank \(0\).

Complex multiplication

The elliptic curves in class 10608m do not have complex multiplication.

Modular form 10608.2.a.m

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + 2 q^{11} - q^{13} + 2 q^{15} - q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.