Properties

Label 10608r
Number of curves 44
Conductor 1060810608
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 10608r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.j2 10608r1 [0,1,0,3153,67104][0, -1, 0, -3153, -67104] 216727177216000/2738853216727177216000/2738853 4382164843821648 [2][2] 57605760 0.612570.61257 Γ0(N)\Gamma_0(N)-optimal
10608.j3 10608r2 [0,1,0,3068,70980][0, -1, 0, -3068, -70980] 12479332642000/1526829993-12479332642000/1526829993 390868478208-390868478208 [2][2] 1152011520 0.959150.95915  
10608.j1 10608r3 [0,1,0,4953,19764][0, -1, 0, -4953, 19764] 840033089536000/477272151837840033089536000/477272151837 76363544293927636354429392 [2][2] 1728017280 1.16191.1619  
10608.j4 10608r4 [0,1,0,19612,137676][0, -1, 0, 19612, 137676] 3258571509326000/19208431219773258571509326000/1920843121977 491735839226112-491735839226112 [2][2] 3456034560 1.50851.5085  

Rank

sage: E.rank()
 

The elliptic curves in class 10608r have rank 11.

Complex multiplication

The elliptic curves in class 10608r do not have complex multiplication.

Modular form 10608.2.a.r

sage: E.q_eigenform(10)
 
qq3+4q7+q9+q13q172q19+O(q20)q - q^{3} + 4 q^{7} + q^{9} + q^{13} - q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.