E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 10608r
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
10608.j2 |
10608r1 |
[0,−1,0,−3153,−67104] |
216727177216000/2738853 |
43821648 |
[2] |
5760 |
0.61257
|
Γ0(N)-optimal |
10608.j3 |
10608r2 |
[0,−1,0,−3068,−70980] |
−12479332642000/1526829993 |
−390868478208 |
[2] |
11520 |
0.95915
|
|
10608.j1 |
10608r3 |
[0,−1,0,−4953,19764] |
840033089536000/477272151837 |
7636354429392 |
[2] |
17280 |
1.1619
|
|
10608.j4 |
10608r4 |
[0,−1,0,19612,137676] |
3258571509326000/1920843121977 |
−491735839226112 |
[2] |
34560 |
1.5085
|
|
The elliptic curves in class 10608r have
rank 1.
The elliptic curves in class 10608r do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.