Properties

Label 10608r
Number of curves $4$
Conductor $10608$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 10608r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.j2 10608r1 \([0, -1, 0, -3153, -67104]\) \(216727177216000/2738853\) \(43821648\) \([2]\) \(5760\) \(0.61257\) \(\Gamma_0(N)\)-optimal
10608.j3 10608r2 \([0, -1, 0, -3068, -70980]\) \(-12479332642000/1526829993\) \(-390868478208\) \([2]\) \(11520\) \(0.95915\)  
10608.j1 10608r3 \([0, -1, 0, -4953, 19764]\) \(840033089536000/477272151837\) \(7636354429392\) \([2]\) \(17280\) \(1.1619\)  
10608.j4 10608r4 \([0, -1, 0, 19612, 137676]\) \(3258571509326000/1920843121977\) \(-491735839226112\) \([2]\) \(34560\) \(1.5085\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10608r have rank \(1\).

Complex multiplication

The elliptic curves in class 10608r do not have complex multiplication.

Modular form 10608.2.a.r

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} + q^{13} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.