Properties

Label 10608u1
Conductor 1060810608
Discriminant 3194598139231945981392
j-invariant 71073479557121996623837 \frac{7107347955712}{1996623837}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x21009x9190y^2=x^3+x^2-1009x-9190 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z1009xz29190z3y^2z=x^3+x^2z-1009xz^2-9190z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x381756x6454269y^2=x^3-81756x-6454269 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -1009, -9190])
 
gp: E = ellinit([0, 1, 0, -1009, -9190])
 
magma: E := EllipticCurve([0, 1, 0, -1009, -9190]);
 
oscar: E = elliptic_curve([0, 1, 0, -1009, -9190])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(98,918)(98, 918)0.861867321047833594075134616810.86186732104783359407513461681\infty
(10,0)(-10, 0)0022

Integral points

(26,±12)(-26,\pm 12), (10,0) \left(-10, 0\right) , (98,±918)(98,\pm 918) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  10608 10608  = 24313172^{4} \cdot 3 \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3194598139231945981392 = 24312131722^{4} \cdot 3^{12} \cdot 13 \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  71073479557121996623837 \frac{7107347955712}{1996623837}  = 21431213117275732^{14} \cdot 3^{-12} \cdot 13^{-1} \cdot 17^{-2} \cdot 757^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.722625746874094539874493037370.72262574687409453987449303737
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.491576686687446103402082330220.49157668668744610340208233022
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.9705982873575820.970598287357582
Szpiro ratio: σm\sigma_{m} ≈ 3.49158151675569873.4915815167556987

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.861867321047833594075134616810.86186732104783359407513461681
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.865033704842203819863453554940.86503370484220381986345355494
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 1(223)12 1\cdot( 2^{2} \cdot 3 )\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.47326569085059563036247853244.4732656908505956303624785324
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.473265691L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8650340.86186724224.473265691\displaystyle 4.473265691 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.865034 \cdot 0.861867 \cdot 24}{2^2} \approx 4.473265691

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   10608.2.a.o

q+q32q52q7+q9+2q11q132q15q172q19+O(q20) q + q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + 2 q^{11} - q^{13} - 2 q^{15} - q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6912
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive -1 4 4 0
33 1212 I12I_{12} split multiplicative -1 1 12 12
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.3

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1319, 5298, 6, 5], [2653, 8, 0, 1], [4904, 3, 413, 2], [1, 0, 8, 1], [2503, 6, 4674, 5299], [1, 8, 0, 1], [1, 4, 4, 17], [3, 8, 28, 75], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [5, 8, 48, 77]]
 
GL(2,Integers(5304)).subgroup(gens)
 
Gens := [[1319, 5298, 6, 5], [2653, 8, 0, 1], [4904, 3, 413, 2], [1, 0, 8, 1], [2503, 6, 4674, 5299], [1, 8, 0, 1], [1, 4, 4, 17], [3, 8, 28, 75], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [5, 8, 48, 77]];
 
sub<GL(2,Integers(5304))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 5304=2331317 5304 = 2^{3} \cdot 3 \cdot 13 \cdot 17 , index 4848, genus 00, and generators

(1319529865),(2653801),(490434132),(1081),(2503646745299),(1801),(14417),(382875),(5297852969),(17698177233),(584877)\left(\begin{array}{rr} 1319 & 5298 \\ 6 & 5 \end{array}\right),\left(\begin{array}{rr} 2653 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4904 & 3 \\ 413 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2503 & 6 \\ 4674 & 5299 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 28 & 75 \end{array}\right),\left(\begin{array}{rr} 5297 & 8 \\ 5296 & 9 \end{array}\right),\left(\begin{array}{rr} 1769 & 8 \\ 1772 & 33 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[5304])K:=\Q(E[5304]) is a degree-31534539079683153453907968 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/5304Z)\GL_2(\Z/5304\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 13 13
33 split multiplicative 44 3536=241317 3536 = 2^{4} \cdot 13 \cdot 17
1313 nonsplit multiplicative 1414 816=24317 816 = 2^{4} \cdot 3 \cdot 17
1717 nonsplit multiplicative 1818 624=24313 624 = 2^{4} \cdot 3 \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 10608u consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 2652a1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(13)\Q(\sqrt{13}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.832.1 Z/4Z\Z/4\Z not in database
88 8.0.116985856.1 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.1651261089746944.34 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split ord ord ord nonsplit nonsplit ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 2 1 1 1 1 1 1 1 3 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.