Properties

Label 10608x
Number of curves 22
Conductor 1060810608
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 10608x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.l2 10608x1 [0,1,0,4200,103284][0, 1, 0, -4200, 103284] 2000852317801/20944172000852317801/2094417 85787320328578732032 [2][2] 1843218432 0.823320.82332 Γ0(N)\Gamma_0(N)-optimal
10608.l1 10608x2 [0,1,0,5240,47124][0, 1, 0, -5240, 47124] 3885442650361/19966238373885442650361/1996623837 81781712363528178171236352 [2][2] 3686436864 1.16991.1699  

Rank

sage: E.rank()
 

The elliptic curves in class 10608x have rank 22.

Complex multiplication

The elliptic curves in class 10608x do not have complex multiplication.

Modular form 10608.2.a.x

sage: E.q_eigenform(10)
 
q+q34q52q7+q96q11q134q15+q174q19+O(q20)q + q^{3} - 4 q^{5} - 2 q^{7} + q^{9} - 6 q^{11} - q^{13} - 4 q^{15} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.