sage:E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 10608x
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
10608.l2 |
10608x1 |
[0,1,0,−4200,103284] |
2000852317801/2094417 |
8578732032 |
[2] |
18432 |
0.82332
|
Γ0(N)-optimal |
10608.l1 |
10608x2 |
[0,1,0,−5240,47124] |
3885442650361/1996623837 |
8178171236352 |
[2] |
36864 |
1.1699
|
|
sage:E.rank()
The elliptic curves in class 10608x have
rank 2.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
13 | 1+T |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+5T2 |
1.5.a
|
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−2T+11T2 |
1.11.ac
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 10608x do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.