Properties

Label 10608z
Number of curves $4$
Conductor $10608$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 10608z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.q4 10608z1 \([0, 1, 0, 136, -1068]\) \(67419143/169728\) \(-695205888\) \([2]\) \(3072\) \(0.38045\) \(\Gamma_0(N)\)-optimal
10608.q3 10608z2 \([0, 1, 0, -1144, -12844]\) \(40459583737/7033104\) \(28807593984\) \([2, 2]\) \(6144\) \(0.72702\)  
10608.q1 10608z3 \([0, 1, 0, -17464, -894124]\) \(143820170742457/5826444\) \(23865114624\) \([2]\) \(12288\) \(1.0736\)  
10608.q2 10608z4 \([0, 1, 0, -5304, 135252]\) \(4029546653497/351790452\) \(1440933691392\) \([4]\) \(12288\) \(1.0736\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10608z have rank \(1\).

Complex multiplication

The elliptic curves in class 10608z do not have complex multiplication.

Modular form 10608.2.a.z

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + q^{13} - 2 q^{15} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.