E = EllipticCurve("z1")
E.isogeny_class()
Elliptic curves in class 10608z
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
10608.q4 |
10608z1 |
[0,1,0,136,−1068] |
67419143/169728 |
−695205888 |
[2] |
3072 |
0.38045
|
Γ0(N)-optimal |
10608.q3 |
10608z2 |
[0,1,0,−1144,−12844] |
40459583737/7033104 |
28807593984 |
[2,2] |
6144 |
0.72702
|
|
10608.q1 |
10608z3 |
[0,1,0,−17464,−894124] |
143820170742457/5826444 |
23865114624 |
[2] |
12288 |
1.0736
|
|
10608.q2 |
10608z4 |
[0,1,0,−5304,135252] |
4029546653497/351790452 |
1440933691392 |
[4] |
12288 |
1.0736
|
|
The elliptic curves in class 10608z have
rank 1.
The elliptic curves in class 10608z do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.