Properties

Label 10608z
Number of curves 44
Conductor 1060810608
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 10608z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10608.q4 10608z1 [0,1,0,136,1068][0, 1, 0, 136, -1068] 67419143/16972867419143/169728 695205888-695205888 [2][2] 30723072 0.380450.38045 Γ0(N)\Gamma_0(N)-optimal
10608.q3 10608z2 [0,1,0,1144,12844][0, 1, 0, -1144, -12844] 40459583737/703310440459583737/7033104 2880759398428807593984 [2,2][2, 2] 61446144 0.727020.72702  
10608.q1 10608z3 [0,1,0,17464,894124][0, 1, 0, -17464, -894124] 143820170742457/5826444143820170742457/5826444 2386511462423865114624 [2][2] 1228812288 1.07361.0736  
10608.q2 10608z4 [0,1,0,5304,135252][0, 1, 0, -5304, 135252] 4029546653497/3517904524029546653497/351790452 14409336913921440933691392 [4][4] 1228812288 1.07361.0736  

Rank

sage: E.rank()
 

The elliptic curves in class 10608z have rank 11.

Complex multiplication

The elliptic curves in class 10608z do not have complex multiplication.

Modular form 10608.2.a.z

sage: E.q_eigenform(10)
 
q+q32q5+q9+q132q15+q17+O(q20)q + q^{3} - 2 q^{5} + q^{9} + q^{13} - 2 q^{15} + q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.