Properties

Label 106470gc
Number of curves $8$
Conductor $106470$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("gc1")
 
E.isogeny_class()
 

Elliptic curves in class 106470gc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106470.fp7 106470gc1 \([1, -1, 1, 319378, -52428931]\) \(1023887723039/928972800\) \(-3268817244138700800\) \([2]\) \(2359296\) \(2.2399\) \(\Gamma_0(N)\)-optimal
106470.fp6 106470gc2 \([1, -1, 1, -1627502, -468282499]\) \(135487869158881/51438240000\) \(180997986076820640000\) \([2, 2]\) \(4718592\) \(2.5865\)  
106470.fp5 106470gc3 \([1, -1, 1, -11483582, 14647001789]\) \(47595748626367201/1215506250000\) \(4277055033644006250000\) \([2, 2]\) \(9437184\) \(2.9331\)  
106470.fp4 106470gc4 \([1, -1, 1, -22921502, -42221557699]\) \(378499465220294881/120530818800\) \(424117066660721506800\) \([2]\) \(9437184\) \(2.9331\)  
106470.fp8 106470gc5 \([1, -1, 1, 1931638, 46811333261]\) \(226523624554079/269165039062500\) \(-947122801880493164062500\) \([2]\) \(18874368\) \(3.2796\)  
106470.fp2 106470gc6 \([1, -1, 1, -182596082, 949742591789]\) \(191342053882402567201/129708022500\) \(456409294923522622500\) \([2, 2]\) \(18874368\) \(3.2796\)  
106470.fp3 106470gc7 \([1, -1, 1, -181455332, 962194106189]\) \(-187778242790732059201/4984939585440150\) \(-17540725065229454251404150\) \([2]\) \(37748736\) \(3.6262\)  
106470.fp1 106470gc8 \([1, -1, 1, -2921536832, 60781355487389]\) \(783736670177727068275201/360150\) \(1267275565524150\) \([2]\) \(37748736\) \(3.6262\)  

Rank

sage: E.rank()
 

The elliptic curves in class 106470gc have rank \(1\).

Complex multiplication

The elliptic curves in class 106470gc do not have complex multiplication.

Modular form 106470.2.a.gc

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} - 4 q^{11} + q^{14} + q^{16} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 8 & 8 \\ 8 & 4 & 2 & 8 & 4 & 1 & 2 & 2 \\ 16 & 8 & 4 & 16 & 8 & 2 & 1 & 4 \\ 16 & 8 & 4 & 16 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.