Properties

Label 106560.ch
Number of curves $3$
Conductor $106560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ch1")
 
E.isogeny_class()
 

Elliptic curves in class 106560.ch

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106560.ch1 106560eh1 \([0, 0, 0, -30828, 2083408]\) \(-16954786009/370\) \(-70708101120\) \([]\) \(165888\) \(1.1978\) \(\Gamma_0(N)\)-optimal
106560.ch2 106560eh2 \([0, 0, 0, -10668, 4752592]\) \(-702595369/50653000\) \(-9679939043328000\) \([]\) \(497664\) \(1.7471\)  
106560.ch3 106560eh3 \([0, 0, 0, 95892, -127424432]\) \(510273943271/37000000000\) \(-7070810112000000000\) \([]\) \(1492992\) \(2.2964\)  

Rank

sage: E.rank()
 

The elliptic curves in class 106560.ch have rank \(1\).

Complex multiplication

The elliptic curves in class 106560.ch do not have complex multiplication.

Modular form 106560.2.a.ch

sage: E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 3 q^{11} + 4 q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.