Properties

Label 106560bh
Number of curves $2$
Conductor $106560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bh1")
 
E.isogeny_class()
 

Elliptic curves in class 106560bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106560.be2 106560bh1 \([0, 0, 0, -6528, 78752]\) \(2575826944/1266325\) \(15124904755200\) \([]\) \(138240\) \(1.2222\) \(\Gamma_0(N)\)-optimal
106560.be1 106560bh2 \([0, 0, 0, -432768, 109579808]\) \(750484394082304/578125\) \(6905088000000\) \([]\) \(414720\) \(1.7715\)  

Rank

sage: E.rank()
 

The elliptic curves in class 106560bh have rank \(0\).

Complex multiplication

The elliptic curves in class 106560bh do not have complex multiplication.

Modular form 106560.2.a.bh

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 3 q^{11} + 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.