sage:E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 106742g
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
106742.k2 |
106742g1 |
[1,1,1,−43598,3486819] |
−413493625/152 |
−3368982891608 |
[] |
302328 |
1.3717
|
Γ0(N)-optimal |
106742.k3 |
106742g2 |
[1,1,1,26627,13329555] |
94196375/3511808 |
−77836980727711232 |
[] |
906984 |
1.9210
|
|
106742.k1 |
106742g3 |
[1,1,1,−240228,−364643867] |
−69173457625/2550136832 |
−56522153672812003328 |
[] |
2720952 |
2.4703
|
|
sage:E.rank()
The elliptic curves in class 106742g have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
19 | 1+T |
53 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
5 |
1+2T+5T2 |
1.5.c
|
7 |
1−3T+7T2 |
1.7.ad
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1−T+13T2 |
1.13.ab
|
17 |
1−5T+17T2 |
1.17.af
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+7T+29T2 |
1.29.h
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 106742g do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.