Properties

Label 106742g
Number of curves 33
Conductor 106742106742
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 106742g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106742.k2 106742g1 [1,1,1,43598,3486819][1, 1, 1, -43598, 3486819] 413493625/152-413493625/152 3368982891608-3368982891608 [][] 302328302328 1.37171.3717 Γ0(N)\Gamma_0(N)-optimal
106742.k3 106742g2 [1,1,1,26627,13329555][1, 1, 1, 26627, 13329555] 94196375/351180894196375/3511808 77836980727711232-77836980727711232 [][] 906984906984 1.92101.9210  
106742.k1 106742g3 [1,1,1,240228,364643867][1, 1, 1, -240228, -364643867] 69173457625/2550136832-69173457625/2550136832 56522153672812003328-56522153672812003328 [][] 27209522720952 2.47032.4703  

Rank

sage: E.rank()
 

The elliptic curves in class 106742g have rank 00.

Complex multiplication

The elliptic curves in class 106742g do not have complex multiplication.

Modular form 106742.2.a.g

sage: E.q_eigenform(10)
 
q+q2q3+q4q6q7+q82q96q11q12+5q13q14+q16+3q172q18q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} - 2 q^{9} - 6 q^{11} - q^{12} + 5 q^{13} - q^{14} + q^{16} + 3 q^{17} - 2 q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.