Properties

Label 106742g1
Conductor 106742106742
Discriminant 3.369×1012-3.369\times 10^{12}
j-invariant 413493625152 -\frac{413493625}{152}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x243598x+3486819y^2+xy+y=x^3+x^2-43598x+3486819 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z43598xz2+3486819z3y^2z+xyz+yz^2=x^3+x^2z-43598xz^2+3486819z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x356503035x+163528581078y^2=x^3-56503035x+163528581078 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -43598, 3486819])
 
gp: E = ellinit([1, 1, 1, -43598, 3486819])
 
magma: E := EllipticCurve([1, 1, 1, -43598, 3486819]);
 
oscar: E = elliptic_curve([1, 1, 1, -43598, 3486819])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  106742 106742  = 2195322 \cdot 19 \cdot 53^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3368982891608-3368982891608 = 12319536-1 \cdot 2^{3} \cdot 19 \cdot 53^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  413493625152 -\frac{413493625}{152}  = 123531911493-1 \cdot 2^{-3} \cdot 5^{3} \cdot 19^{-1} \cdot 149^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.37170327906519480662895125271.3717032790651948066289512527
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.61344267771086611044328331681-0.61344267771086611044328331681
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93280722081599580.9328072208159958
Szpiro ratio: σm\sigma_{m} ≈ 3.7711088363861333.771108836386133

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.779094927973324888148576406660.77909492797332488814857640666
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 3 3  = 311 3\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.33728478391997466444572922002.3372847839199746644457292200
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.337284784L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7790951.0000003122.337284784\displaystyle 2.337284784 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.779095 \cdot 1.000000 \cdot 3}{1^2} \approx 2.337284784

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 106742.2.a.k

q+q2q3+q4q6q7+q82q96q11q12+5q13q14+q16+3q172q18q19+O(q20) q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} - 2 q^{9} - 6 q^{11} - q^{12} + 5 q^{13} - q^{14} + q^{16} + 3 q^{17} - 2 q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 302328
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 I3I_{3} split multiplicative -1 1 3 3
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1
5353 11 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 27.36.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[217459, 54, 217458, 55], [31, 36, 211690, 210751], [212531, 115593, 22843, 105100], [94391, 0, 0, 217511], [1, 54, 0, 1], [28, 27, 729, 703], [131812, 114957, 31747, 34186], [155980, 155979, 13833, 81568], [163135, 94446, 0, 1], [1, 0, 54, 1]]
 
GL(2,Integers(217512)).subgroup(gens)
 
Gens := [[217459, 54, 217458, 55], [31, 36, 211690, 210751], [212531, 115593, 22843, 105100], [94391, 0, 0, 217511], [1, 54, 0, 1], [28, 27, 729, 703], [131812, 114957, 31747, 34186], [155980, 155979, 13833, 81568], [163135, 94446, 0, 1], [1, 0, 54, 1]];
 
sub<GL(2,Integers(217512))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 217512=23331953 217512 = 2^{3} \cdot 3^{3} \cdot 19 \cdot 53 , index 12961296, genus 4343, and generators

(2174595421745855),(3136211690210751),(21253111559322843105100),(9439100217511),(15401),(2827729703),(1318121149573174734186),(1559801559791383381568),(1631359444601),(10541)\left(\begin{array}{rr} 217459 & 54 \\ 217458 & 55 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 211690 & 210751 \end{array}\right),\left(\begin{array}{rr} 212531 & 115593 \\ 22843 & 105100 \end{array}\right),\left(\begin{array}{rr} 94391 & 0 \\ 0 & 217511 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 131812 & 114957 \\ 31747 & 34186 \end{array}\right),\left(\begin{array}{rr} 155980 & 155979 \\ 13833 & 81568 \end{array}\right),\left(\begin{array}{rr} 163135 & 94446 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[217512])K:=\Q(E[217512]) is a degree-355633294355988480355633294355988480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/217512Z)\GL_2(\Z/217512\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 53371=19532 53371 = 19 \cdot 53^{2}
33 good 22 53371=19532 53371 = 19 \cdot 53^{2}
1919 nonsplit multiplicative 2020 5618=2532 5618 = 2 \cdot 53^{2}
5353 additive 14061406 38=219 38 = 2 \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 106742g consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 38a3, its twist by 5353.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(53)\Q(\sqrt{53}) Z/3Z\Z/3\Z 2.2.53.1-1444.1-b1
33 3.1.152.1 Z/2Z\Z/2\Z not in database
66 6.0.3511808.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.523848586959.3 Z/3Z\Z/3\Z not in database
66 6.6.19401799517.1 Z/9Z\Z/9\Z not in database
66 6.2.3439654208.2 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.2105703164178766161.1 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.13603932054942674283654347261429447529332736.1 Z/6Z\Z/6\Z not in database
1818 18.6.691151351671120981743349451883831099392.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
Reduction type split ord ss ord ord ord ord nonsplit ord ord ord ord ss ord ss add
λ\lambda-invariant(s) 1 4 0,0 0 0 0 0 0 0 0 0 0 0,0 0 0,0 -
μ\mu-invariant(s) 0 0 0,0 0 0 0 0 0 0 0 0 0 0,0 0 0,0 -

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.