sage:E = EllipticCurve("bc1")
E.isogeny_class()
Elliptic curves in class 107800.bc
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
107800.bc1 |
107800bo2 |
[0,0,0,−434875,−30098250] |
2415899250/1294139 |
4872133094752000000 |
[2] |
1327104 |
2.2771
|
|
107800.bc2 |
107800bo1 |
[0,0,0,104125,−3687250] |
66325500/41503 |
−78124583152000000 |
[2] |
663552 |
1.9305
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 107800.bc have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
7 | 1 |
11 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1+17T2 |
1.17.a
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 107800.bc do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.