Properties

Label 107800.bc
Number of curves 22
Conductor 107800107800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Elliptic curves in class 107800.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
107800.bc1 107800bo2 [0,0,0,434875,30098250][0, 0, 0, -434875, -30098250] 2415899250/12941392415899250/1294139 48721330947520000004872133094752000000 [2][2] 13271041327104 2.27712.2771  
107800.bc2 107800bo1 [0,0,0,104125,3687250][0, 0, 0, 104125, -3687250] 66325500/4150366325500/41503 78124583152000000-78124583152000000 [2][2] 663552663552 1.93051.9305 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 107800.bc have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
7711
11111+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T2 1 + 3 T^{2} 1.3.a
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 107800.bc do not have complex multiplication.

Modular form 107800.2.a.bc

Copy content sage:E.q_eigenform(10)
 
q3q9q116q13+2q19+O(q20)q - 3 q^{9} - q^{11} - 6 q^{13} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.