Properties

Label 107800bn3
Conductor 107800107800
Discriminant 5.561×1022-5.561\times 10^{22}
j-invariant 195796071536429541015625 -\frac{1957960715364}{29541015625}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x33218075x11561072250y^2=x^3-3218075x-11561072250 Copy content Toggle raw display (homogenize, simplify)
y2z=x33218075xz211561072250z3y^2z=x^3-3218075xz^2-11561072250z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33218075x11561072250y^2=x^3-3218075x-11561072250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -3218075, -11561072250])
 
gp: E = ellinit([0, 0, 0, -3218075, -11561072250])
 
magma: E := EllipticCurve([0, 0, 0, -3218075, -11561072250]);
 
oscar: E = elliptic_curve([0, 0, 0, -3218075, -11561072250])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(20301771/4225,79557936444/274625)(20301771/4225, 79557936444/274625)14.12791670731943616117956251814.127916707319436161179562518\infty
(2730,0)(2730, 0)0022

Integral points

(2730,0) \left(2730, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  107800 107800  = 235272112^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  55607535156250000000000-55607535156250000000000 = 121051876112-1 \cdot 2^{10} \cdot 5^{18} \cdot 7^{6} \cdot 11^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  195796071536429541015625 -\frac{1957960715364}{29541015625}  = 12233512112373713-1 \cdot 2^{2} \cdot 3^{3} \cdot 5^{-12} \cdot 11^{-2} \cdot 37^{3} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.04577999490956471114277530583.0457799949095647111427753058
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.690483313698236780108692499580.69048331369823678010869249958
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10389149369923431.1038914936992343
Szpiro ratio: σm\sigma_{m} ≈ 5.1661023715474745.166102371547474

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 14.12791670731943616117956251814.127916707319436161179562518
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0478833830961116735748914362700.047883383096111673574891436270
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2\cdot2^{2}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 5.41193958437226547133561124865.4119395843722654713356112486
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.411939584L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.04788314.12791732225.411939584\displaystyle 5.411939584 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.047883 \cdot 14.127917 \cdot 32}{2^2} \approx 5.411939584

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 107800.2.a.bk

q3q9q11+6q136q174q19+O(q20) q - 3 q^{9} - q^{11} + 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 7962624
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive -1 3 10 0
55 44 I12I_{12}^{*} additive 1 2 18 12
77 22 I0I_0^{*} additive -1 2 6 0
1111 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.12.0.9

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[879, 0, 0, 6159], [1, 16, 0, 1], [2463, 5264, 5796, 1567], [5776, 1281, 833, 3704], [1, 12, 4, 49], [1, 0, 16, 1], [673, 1652, 3416, 1541], [3935, 5446, 154, 3347], [5, 16, 64, 205], [6145, 16, 6144, 17]]
 
GL(2,Integers(6160)).subgroup(gens)
 
Gens := [[879, 0, 0, 6159], [1, 16, 0, 1], [2463, 5264, 5796, 1567], [5776, 1281, 833, 3704], [1, 12, 4, 49], [1, 0, 16, 1], [673, 1652, 3416, 1541], [3935, 5446, 154, 3347], [5, 16, 64, 205], [6145, 16, 6144, 17]];
 
sub<GL(2,Integers(6160))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6160=245711 6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11 , index 192192, genus 33, and generators

(879006159),(11601),(2463526457961567),(577612818333704),(112449),(10161),(673165234161541),(393554461543347),(51664205),(614516614417)\left(\begin{array}{rr} 879 & 0 \\ 0 & 6159 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2463 & 5264 \\ 5796 & 1567 \end{array}\right),\left(\begin{array}{rr} 5776 & 1281 \\ 833 & 3704 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 4 & 49 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 673 & 1652 \\ 3416 & 1541 \end{array}\right),\left(\begin{array}{rr} 3935 & 5446 \\ 154 & 3347 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 64 & 205 \end{array}\right),\left(\begin{array}{rr} 6145 & 16 \\ 6144 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6160])K:=\Q(E[6160]) is a degree-16349921280001634992128000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6160Z)\GL_2(\Z/6160\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 1225=5272 1225 = 5^{2} \cdot 7^{2}
55 additive 1818 4312=237211 4312 = 2^{3} \cdot 7^{2} \cdot 11
77 additive 2626 2200=235211 2200 = 2^{3} \cdot 5^{2} \cdot 11
1111 nonsplit multiplicative 1212 9800=235272 9800 = 2^{3} \cdot 5^{2} \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 107800bn consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 440c4, its twist by 35-35.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(1)\Q(\sqrt{-1}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(35)\Q(\sqrt{35}) Z/4Z\Z/4\Z not in database
22 Q(35)\Q(\sqrt{-35}) Z/4Z\Z/4\Z not in database
44 Q(i,35)\Q(i, \sqrt{35}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.5624486560000.7 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.4.1439868559360000.100 Z/8Z\Z/8\Z not in database
88 8.0.6146560000.10 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ss add add nonsplit ord ord ord ord ord ord ord ord ss ord
λ\lambda-invariant(s) - 1,1 - - 1 1 1 1 1 1 1 3 3 1,1 1
μ\mu-invariant(s) - 0,0 - - 0 0 0 0 0 0 0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.