Properties

Label 107800r
Number of curves 22
Conductor 107800107800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Elliptic curves in class 107800r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
107800.n2 107800r1 [0,1,0,53492,643488][0, 1, 0, 53492, 643488] 35969456/2117535969456/21175 9964870300000000-9964870300000000 [2][2] 589824589824 1.75921.7592 Γ0(N)\Gamma_0(N)-optimal
107800.n1 107800r2 [0,1,0,216008,4955488][0, 1, 0, -216008, 4955488] 592143556/336875592143556/336875 634128110000000000634128110000000000 [2][2] 11796481179648 2.10582.1058  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 107800r have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
7711
11111T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 107800r do not have complex multiplication.

Modular form 107800.2.a.r

Copy content sage:E.q_eigenform(10)
 
q2q3+q9+q11+4q17+4q19+O(q20)q - 2 q^{3} + q^{9} + q^{11} + 4 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.