sage:E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 107800r
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
107800.n2 |
107800r1 |
[0,1,0,53492,643488] |
35969456/21175 |
−9964870300000000 |
[2] |
589824 |
1.7592
|
Γ0(N)-optimal |
107800.n1 |
107800r2 |
[0,1,0,−216008,4955488] |
592143556/336875 |
634128110000000000 |
[2] |
1179648 |
2.1058
|
|
sage:E.rank()
The elliptic curves in class 107800r have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
7 | 1 |
11 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 107800r do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.