Properties

Label 10800.bv
Number of curves $2$
Conductor $10800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bv1")
 
E.isogeny_class()
 

Elliptic curves in class 10800.bv

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10800.bv1 10800db1 \([0, 0, 0, -16200, -796500]\) \(-5971968/25\) \(-1968300000000\) \([]\) \(20736\) \(1.2140\) \(\Gamma_0(N)\)-optimal
10800.bv2 10800db2 \([0, 0, 0, 37800, -4198500]\) \(8429568/15625\) \(-11071687500000000\) \([]\) \(62208\) \(1.7633\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10800.bv have rank \(1\).

Complex multiplication

The elliptic curves in class 10800.bv do not have complex multiplication.

Modular form 10800.2.a.bv

sage: E.q_eigenform(10)
 
\(q - q^{7} + 6 q^{11} + q^{13} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.