Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-25\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-25z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-25\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(5, 10)$ | $0.87859660465964886494494194673$ | $\infty$ | 
Integral points
      
    \((5,\pm 10)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 10800 \) | = | $2^{4} \cdot 3^{3} \cdot 5^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-270000$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 5^{4} $ | 
     | 
        
| j-invariant: | $j$ | = | \( 0 \) | = | $0$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.27893599192966193080172740173$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691959$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.1492677258393535$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.87859660465964886494494194673$ | 
     | 
| Real period: | $\Omega$ | ≈ | $1.4202835148690916341580958947$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot1\cdot3 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $3.7435688214541674684585669805 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 3.743568821 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.420284 \cdot 0.878597 \cdot 3}{1^2} \\ & \approx 3.743568821\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1296 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 | 
| $3$ | $1$ | $II$ | additive | 1 | 3 | 3 | 0 | 
| $5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 675 = 3^{3} \cdot 5^{2} \) | 
| $3$ | additive | $2$ | \( 400 = 2^{4} \cdot 5^{2} \) | 
| $5$ | additive | $14$ | \( 432 = 2^{4} \cdot 3^{3} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 10800.a
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 2700.u2, its twist by $-4$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $-10000$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/3\Z\) | not in database | 
| $3$ | 3.1.675.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.0.1366875.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $6$ | 6.2.4320000.2 | \(\Z/3\Z\) | not in database | 
| $6$ | 6.0.29160000.1 | \(\Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | 12.0.18662400000000.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/7\Z\) | not in database | 
| $12$ | 12.0.7652750400000000.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $18$ | 18.0.10411482432835584000000000000.3 | \(\Z/9\Z\) | not in database | 
| $18$ | 18.2.42845606719488000000000000.1 | \(\Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ord | ss | ord | ss | ord | ss | ss | ord | ord | ss | ord | ss | 
| $\lambda$-invariant(s) | - | - | - | 1 | 1,1 | 1 | 1,1 | 3 | 1,1 | 1,1 | 1 | 1 | 1,1 | 1 | 1,1 | 
| $\mu$-invariant(s) | - | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.