Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-25\)
|
(homogenize, simplify) |
\(y^2z=x^3-25z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-25\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5, 10)$ | $0.87859660465964886494494194673$ | $\infty$ |
Integral points
\((5,\pm 10)\)
Invariants
Conductor: | $N$ | = | \( 10800 \) | = | $2^{4} \cdot 3^{3} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $-270000$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 5^{4} $ |
|
j-invariant: | $j$ | = | \( 0 \) | = | $0$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.27893599192966193080172740173$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691959$ |
|
||
$abc$ quality: | $Q$ | ≈ | $$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.1492677258393535$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.87859660465964886494494194673$ |
|
Real period: | $\Omega$ | ≈ | $1.4202835148690916341580958947$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot1\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.7435688214541674684585669805 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.743568821 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.420284 \cdot 0.878597 \cdot 3}{1^2} \\ & \approx 3.743568821\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1296 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
$3$ | $1$ | $II$ | additive | 1 | 3 | 3 | 0 |
$5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 675 = 3^{3} \cdot 5^{2} \) |
$3$ | additive | $2$ | \( 400 = 2^{4} \cdot 5^{2} \) |
$5$ | additive | $14$ | \( 432 = 2^{4} \cdot 3^{3} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 10800.a
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 2700.u2, its twist by $-4$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $-10000$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.675.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1366875.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.4320000.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.29160000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.18662400000000.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/7\Z\) | not in database |
$12$ | 12.0.7652750400000000.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.10411482432835584000000000000.3 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.42845606719488000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ord | ss | ord | ss | ord | ss | ss | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | - | - | - | 1 | 1,1 | 1 | 1,1 | 3 | 1,1 | 1,1 | 1 | 1 | 1,1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.