Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1083c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1083.d2 | 1083c1 | \([0, -1, 1, 7100, 260625]\) | \(841232384/1121931\) | \(-52782232316211\) | \([]\) | \(4320\) | \(1.3189\) | \(\Gamma_0(N)\)-optimal |
1083.d1 | 1083c2 | \([0, -1, 1, -1584910, 768519165]\) | \(-9358714467168256/22284891\) | \(-1048412330083971\) | \([]\) | \(21600\) | \(2.1236\) |
Rank
sage: E.rank()
The elliptic curves in class 1083c have rank \(0\).
Complex multiplication
The elliptic curves in class 1083c do not have complex multiplication.Modular form 1083.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.