Properties

Label 1083c
Number of curves 22
Conductor 10831083
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1083c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1083.d2 1083c1 [0,1,1,7100,260625][0, -1, 1, 7100, 260625] 841232384/1121931841232384/1121931 52782232316211-52782232316211 [][] 43204320 1.31891.3189 Γ0(N)\Gamma_0(N)-optimal
1083.d1 1083c2 [0,1,1,1584910,768519165][0, -1, 1, -1584910, 768519165] 9358714467168256/22284891-9358714467168256/22284891 1048412330083971-1048412330083971 [][] 2160021600 2.12362.1236  

Rank

sage: E.rank()
 

The elliptic curves in class 1083c have rank 00.

Complex multiplication

The elliptic curves in class 1083c do not have complex multiplication.

Modular form 1083.2.a.c

sage: E.q_eigenform(10)
 
q+2q2q3+2q4+q52q6+3q7+q9+2q103q112q12+6q13+6q14q154q16+3q17+2q18+O(q20)q + 2 q^{2} - q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + 3 q^{7} + q^{9} + 2 q^{10} - 3 q^{11} - 2 q^{12} + 6 q^{13} + 6 q^{14} - q^{15} - 4 q^{16} + 3 q^{17} + 2 q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.