Properties

Label 1083e1
Conductor 10831083
Discriminant 8044845651-8044845651
j-invariant 1404928171 -\frac{1404928}{171}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2842x10633y^2+y=x^3+x^2-842x-10633 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z842xz210633z3y^2z+yz^2=x^3+x^2z-842xz^2-10633z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31091664x482983344y^2=x^3-1091664x-482983344 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -842, -10633])
 
gp: E = ellinit([0, 1, 1, -842, -10633])
 
magma: E := EllipticCurve([0, 1, 1, -842, -10633]);
 
oscar: E = elliptic_curve([0, 1, 1, -842, -10633])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(157/4,1079/8)(157/4, 1079/8)1.19415681026876578849121182471.1941568102687657884912118247\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1083 1083  = 31923 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  8044845651-8044845651 = 132197-1 \cdot 3^{2} \cdot 19^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1404928171 -\frac{1404928}{171}  = 12123273191-1 \cdot 2^{12} \cdot 3^{-2} \cdot 7^{3} \cdot 19^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.635671080304647585675427480350.63567108030464758567542748035
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.83654840927857264432908623559-0.83654840927857264432908623559
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.86511740469593570.8651174046959357
Szpiro ratio: σm\sigma_{m} ≈ 4.581475784343564.58147578434356

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.19415681026876578849121182471.1941568102687657884912118247
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.440094970918972393861456150280.44009497091897239386145615028
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 222 2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.20433925350340251361371689354.2043392535034025136137168935
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.204339254L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4400951.1941578124.204339254\displaystyle 4.204339254 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.440095 \cdot 1.194157 \cdot 8}{1^2} \approx 4.204339254

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1083.2.a.e

q+2q2+q3+2q43q5+2q65q7+q96q10+q11+2q122q1310q143q154q16q17+2q18+O(q20) q + 2 q^{2} + q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - 5 q^{7} + q^{9} - 6 q^{10} + q^{11} + 2 q^{12} - 2 q^{13} - 10 q^{14} - 3 q^{15} - 4 q^{16} - q^{17} + 2 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1440
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I2I_{2} split multiplicative -1 1 2 2
1919 44 I1I_{1}^{*} additive -1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[37, 2, 36, 3], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 21, 3], [1, 1, 37, 0]]
 
GL(2,Integers(38)).subgroup(gens)
 
Gens := [[37, 2, 36, 3], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 21, 3], [1, 1, 37, 0]];
 
sub<GL(2,Integers(38))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 38.2.0.a.1, level 38=219 38 = 2 \cdot 19 , index 22, genus 00, and generators

(372363),(1201),(1021),(212213),(11370)\left(\begin{array}{rr} 37 & 2 \\ 36 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 21 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 37 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[38])K:=\Q(E[38]) is a degree-369360369360 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/38Z)\GL_2(\Z/38\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 361=192 361 = 19^{2}
33 split multiplicative 44 361=192 361 = 19^{2}
1919 additive 200200 3 3

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 1083e consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 57a1, its twist by 19-19.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/2Z\Z/2\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.8334036681507.2 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss split ord ord ord ord ord add ord ord ord ss ss ord ord
λ\lambda-invariant(s) 2,5 2 5 1 1 3 1 - 1 1 1 1,3 1,1 1 1
μ\mu-invariant(s) 0,0 0 0 0 0 0 0 - 0 0 0 0,0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.