Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 1089.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
1089.e1 | 1089b1 | -optimal | |||||||
1089.e2 | 1089b2 |
Rank
sage: E.rank()
The elliptic curves in class 1089.e have rank .
Complex multiplication
Each elliptic curve in class 1089.e has complex multiplication by an order in the imaginary quadratic field .Modular form 1089.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The entry is the smallest degree of a cyclic isogeny between the -th and -th curve in the isogeny class, in the LMFDB numbering.
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.