Properties

Label 1089.e
Number of curves 22
Conductor 10891089
CM Q(3)\Q(\sqrt{-3})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1089.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
1089.e1 1089b1 [0,0,1,0,40263][0, 0, 1, 0, -40263] 00 700310464227-700310464227 [][] 12321232 0.951780.95178 Γ0(N)\Gamma_0(N)-optimal 3-3
1089.e2 1089b2 [0,0,1,0,1087094][0, 0, 1, 0, 1087094] 00 510526328421483-510526328421483 [][] 36963696 1.50111.5011   3-3

Rank

sage: E.rank()
 

The elliptic curves in class 1089.e have rank 00.

Complex multiplication

Each elliptic curve in class 1089.e has complex multiplication by an order in the imaginary quadratic field Q(3)\Q(\sqrt{-3}) .

Modular form 1089.2.a.e

sage: E.q_eigenform(10)
 
q2q45q72q13+4q16+7q19+O(q20)q - 2 q^{4} - 5 q^{7} - 2 q^{13} + 4 q^{16} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.