Properties

Label 10944bk1
Conductor 1094410944
Discriminant 7978176-7978176
j-invariant 1404928171 -\frac{1404928}{171}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x384x326y^2=x^3-84x-326 Copy content Toggle raw display (homogenize, simplify)
y2z=x384xz2326z3y^2z=x^3-84xz^2-326z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x384x326y^2=x^3-84x-326 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -84, -326])
 
gp: E = ellinit([0, 0, 0, -84, -326])
 
magma: E := EllipticCurve([0, 0, 0, -84, -326]);
 
oscar: E = elliptic_curve([0, 0, 0, -84, -326])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(11,9)(11, 9)1.69907226516329163477055237311.6990722651632916347705523731\infty

Integral points

(11,±9)(11,\pm 9) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  10944 10944  = 2632192^{6} \cdot 3^{2} \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  7978176-7978176 = 1263819-1 \cdot 2^{6} \cdot 3^{8} \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1404928171 -\frac{1404928}{171}  = 12123273191-1 \cdot 2^{12} \cdot 3^{-2} \cdot 7^{3} \cdot 19^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.0593313253354548560771524436000.059331325335454856077152443600
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.83654840927857264432908623559-0.83654840927857264432908623559
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.86511740469593570.8651174046959357
Szpiro ratio: σm\sigma_{m} ≈ 2.6984371211876442.698437121187644

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.69907226516329163477055237311.6990722651632916347705523731
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.783154740471218751183011202810.78315474047121875118301120281
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 121 1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.66127299773160685746568651512.6612729977316068574656865151
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.661272998L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7831551.6990722122.661272998\displaystyle 2.661272998 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.783155 \cdot 1.699072 \cdot 2}{1^2} \approx 2.661272998

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   10944.2.a.e

q3q55q7+q112q13+q17+q19+O(q20) q - 3 q^{5} - 5 q^{7} + q^{11} - 2 q^{13} + q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2560
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive 1 6 6 0
33 22 I2I_{2}^{*} additive -1 2 8 2
1919 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[37, 2, 36, 3], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 21, 3], [1, 1, 37, 0]]
 
GL(2,Integers(38)).subgroup(gens)
 
Gens := [[37, 2, 36, 3], [1, 2, 0, 1], [1, 0, 2, 1], [21, 2, 21, 3], [1, 1, 37, 0]];
 
sub<GL(2,Integers(38))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 38.2.0.a.1, level 38=219 38 = 2 \cdot 19 , index 22, genus 00, and generators

(372363),(1201),(1021),(212213),(11370)\left(\begin{array}{rr} 37 & 2 \\ 36 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 21 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 37 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[38])K:=\Q(E[38]) is a degree-369360369360 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/38Z)\GL_2(\Z/38\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 171=3219 171 = 3^{2} \cdot 19
33 additive 88 1216=2619 1216 = 2^{6} \cdot 19
1919 split multiplicative 2020 576=2632 576 = 2^{6} \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 10944bk consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 57a1, its twist by 24-24.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/2Z\Z/2\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord ord ord ord ord split ord ord ord ss ss ord ord
λ\lambda-invariant(s) - - 1 1 1 1 1 2 1 1 1 1,1 1,1 1 1
μ\mu-invariant(s) - - 0 0 0 0 0 0 0 0 0 0,0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.