Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 1098.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1098.l1 | 1098l1 | \([1, -1, 1, -41, -547]\) | \(-10218313/177876\) | \(-129671604\) | \([]\) | \(384\) | \(0.23786\) | \(\Gamma_0(N)\)-optimal |
1098.l2 | 1098l2 | \([1, -1, 1, 364, 14519]\) | \(7335308807/130741056\) | \(-95310229824\) | \([3]\) | \(1152\) | \(0.78717\) |
Rank
sage: E.rank()
The elliptic curves in class 1098.l have rank \(0\).
Complex multiplication
The elliptic curves in class 1098.l do not have complex multiplication.Modular form 1098.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.