Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 11025.m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
11025.m1 | 11025bh2 | \([1, -1, 1, -2294115305, -42292668425178]\) | \(-162677523113838677\) | \(-8208085798828125\) | \([]\) | \(1864800\) | \(3.5975\) | |
11025.m2 | 11025bh1 | \([1, -1, 1, -88430, 11042322]\) | \(-9317\) | \(-8208085798828125\) | \([]\) | \(50400\) | \(1.7920\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 11025.m have rank \(1\).
Complex multiplication
The elliptic curves in class 11025.m do not have complex multiplication.Modular form 11025.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 37 \\ 37 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.