Properties

Label 11025.m
Number of curves 22
Conductor 1102511025
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 11025.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11025.m1 11025bh2 [1,1,1,2294115305,42292668425178][1, -1, 1, -2294115305, -42292668425178] 162677523113838677-162677523113838677 8208085798828125-8208085798828125 [][] 18648001864800 3.59753.5975  
11025.m2 11025bh1 [1,1,1,88430,11042322][1, -1, 1, -88430, 11042322] 9317-9317 8208085798828125-8208085798828125 [][] 5040050400 1.79201.7920 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 11025.m have rank 11.

Complex multiplication

The elliptic curves in class 11025.m do not have complex multiplication.

Modular form 11025.2.a.m

sage: E.q_eigenform(10)
 
qq2q4+3q8+2q13q162q17+6q19+O(q20)q - q^{2} - q^{4} + 3 q^{8} + 2 q^{13} - q^{16} - 2 q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(137371)\left(\begin{array}{rr} 1 & 37 \\ 37 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.