Properties

Label 11025.o
Number of curves $2$
Conductor $11025$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 11025.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11025.o1 11025o2 \([1, -1, 1, -3170, -49318]\) \(8869743/2401\) \(953353965375\) \([2]\) \(12288\) \(1.0066\)  
11025.o2 11025o1 \([1, -1, 1, 505, -5218]\) \(35937/49\) \(-19456203375\) \([2]\) \(6144\) \(0.66001\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 11025.o have rank \(1\).

Complex multiplication

The elliptic curves in class 11025.o do not have complex multiplication.

Modular form 11025.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 3 q^{8} + 4 q^{13} - q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.