Properties

Label 11025.w
Number of curves $2$
Conductor $11025$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 11025.w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11025.w1 11025q2 \([0, 0, 1, -2263800, 1313722156]\) \(-19539165184/46875\) \(-3078032174560546875\) \([]\) \(193536\) \(2.4269\)  
11025.w2 11025q1 \([0, 0, 1, 51450, 9078781]\) \(229376/675\) \(-44323663313671875\) \([]\) \(64512\) \(1.8776\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 11025.w have rank \(0\).

Complex multiplication

The elliptic curves in class 11025.w do not have complex multiplication.

Modular form 11025.2.a.w

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{13} + 4 q^{16} + 6 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.