Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-6468983x+5717150247\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-6468983xz^2+5717150247z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-8383802643x+266865118960302\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(22447/9, 1895537/27)$ | $6.6476222291943333787922184066$ | $\infty$ |
$(7307/4, -7307/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 110670 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $3192006981271292609670$ | = | $2 \cdot 3^{20} \cdot 5 \cdot 7^{3} \cdot 17^{2} \cdot 31^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{29938624729513384169102329}{3192006981271292609670} \) | = | $2^{-1} \cdot 3^{-20} \cdot 5^{-1} \cdot 7^{-3} \cdot 17^{-2} \cdot 31^{-4} \cdot 827^{3} \cdot 375467^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8606298929605851162461822060$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.8606298929605851162461822060$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.9712629337645156$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.050769385077226$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.6476222291943333787922184066$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.13745815251528155679751985315$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2\cdot1\cdot1\cdot2\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $3.6550794809782825855269990720 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 3.655079481 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.137458 \cdot 6.647622 \cdot 16}{2^2} \approx 3.655079481$
Modular invariants
Modular form 110670.2.a.c
For more coefficients, see the Downloads section to the right.
Modular degree: | 10321920 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 6 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{20}$ | nonsplit multiplicative | 1 | 1 | 20 | 20 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$31$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 26040 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 26033 & 8 \\ 26032 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 9241 & 8 \\ 10924 & 33 \end{array}\right),\left(\begin{array}{rr} 8681 & 8 \\ 8684 & 33 \end{array}\right),\left(\begin{array}{rr} 11168 & 3 \\ 3725 & 2 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 26034 & 26035 \end{array}\right),\left(\begin{array}{rr} 9768 & 22793 \\ 16267 & 16254 \end{array}\right),\left(\begin{array}{rr} 5216 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 3256 & 16283 \\ 3259 & 3288 \end{array}\right)$.
The torsion field $K:=\Q(E[26040])$ is a degree-$1327019065344000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/26040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 35 = 5 \cdot 7 \) |
$3$ | nonsplit multiplicative | $4$ | \( 5270 = 2 \cdot 5 \cdot 17 \cdot 31 \) |
$5$ | nonsplit multiplicative | $6$ | \( 7378 = 2 \cdot 7 \cdot 17 \cdot 31 \) |
$7$ | nonsplit multiplicative | $8$ | \( 15810 = 2 \cdot 3 \cdot 5 \cdot 17 \cdot 31 \) |
$17$ | split multiplicative | $18$ | \( 6510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \) |
$31$ | split multiplicative | $32$ | \( 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 110670.c
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{70}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{35}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | nonsplit | nonsplit | ord | ord | split | ss | ord | ord | split | ord | ord | ord | ord |
$\lambda$-invariant(s) | 14 | 1 | 1 | 3 | 1 | 1 | 2 | 1,1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.