Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 110670.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
110670.e1 | 110670f2 | \([1, 1, 0, -9599883258, 362028067960212]\) | \(97841154212352882174458487372245929/56520417771505800000000\) | \(56520417771505800000000\) | \([2]\) | \(92897280\) | \(4.1258\) | |
110670.e2 | 110670f1 | \([1, 1, 0, -599883258, 5658667960212]\) | \(-23873931185246978974311372245929/18155634840000000000000000\) | \(-18155634840000000000000000\) | \([2]\) | \(46448640\) | \(3.7792\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 110670.e have rank \(1\).
Complex multiplication
The elliptic curves in class 110670.e do not have complex multiplication.Modular form 110670.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.