Properties

Label 110670.e
Number of curves $2$
Conductor $110670$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.e1 110670f2 \([1, 1, 0, -9599883258, 362028067960212]\) \(97841154212352882174458487372245929/56520417771505800000000\) \(56520417771505800000000\) \([2]\) \(92897280\) \(4.1258\)  
110670.e2 110670f1 \([1, 1, 0, -599883258, 5658667960212]\) \(-23873931185246978974311372245929/18155634840000000000000000\) \(-18155634840000000000000000\) \([2]\) \(46448640\) \(3.7792\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.e have rank \(1\).

Complex multiplication

The elliptic curves in class 110670.e do not have complex multiplication.

Modular form 110670.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{11} - q^{12} - q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.