Properties

Label 110670.h
Number of curves $2$
Conductor $110670$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.h1 110670h2 \([1, 1, 0, -71493, -7373547]\) \(40413249107617335769/89198633968920\) \(89198633968920\) \([2]\) \(497664\) \(1.5597\)  
110670.h2 110670h1 \([1, 1, 0, -2893, -197987]\) \(-2679190243489369/15177850430400\) \(-15177850430400\) \([2]\) \(248832\) \(1.2132\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.h have rank \(1\).

Complex multiplication

The elliptic curves in class 110670.h do not have complex multiplication.

Modular form 110670.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} - q^{12} - q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.