Properties

Label 110670.i
Number of curves 22
Conductor 110670110670
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Elliptic curves in class 110670.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.i1 110670j2 [1,1,0,38019667,81933755981][1, 1, 0, -38019667, -81933755981] 6077831506811167772920660921/6183082894848873463012506077831506811167772920660921/618308289484887346301250 618308289484887346301250618308289484887346301250 [2][2] 2293760022937600 3.30093.3009  
110670.i2 110670j1 [1,1,0,2986583,6228017231][1, 1, 0, 2986583, -6228017231] 2946098419096782416239079/184681167193444359375002946098419096782416239079/18468116719344435937500 18468116719344435937500-18468116719344435937500 [2][2] 1146880011468800 2.95442.9544 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 110670.i have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551T1 - T
771+T1 + T
17171+T1 + T
31311T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1919 16T+19T2 1 - 6 T + 19 T^{2} 1.19.ag
2323 1+8T+23T2 1 + 8 T + 23 T^{2} 1.23.i
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 110670.i do not have complex multiplication.

Modular form 110670.2.a.i

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4+q5+q6q7q8+q9q10+2q11q12+4q13+q14q15+q16q17q18+6q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + 2 q^{11} - q^{12} + 4 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.