sage:E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 110670.i
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
110670.i1 |
110670j2 |
[1,1,0,−38019667,−81933755981] |
6077831506811167772920660921/618308289484887346301250 |
618308289484887346301250 |
[2] |
22937600 |
3.3009
|
|
110670.i2 |
110670j1 |
[1,1,0,2986583,−6228017231] |
2946098419096782416239079/18468116719344435937500 |
−18468116719344435937500 |
[2] |
11468800 |
2.9544
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 110670.i have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1−T |
7 | 1+T |
17 | 1+T |
31 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1−4T+13T2 |
1.13.ae
|
19 |
1−6T+19T2 |
1.19.ag
|
23 |
1+8T+23T2 |
1.23.i
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 110670.i do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.