Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 110670.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
110670.i1 | 110670j2 | \([1, 1, 0, -38019667, -81933755981]\) | \(6077831506811167772920660921/618308289484887346301250\) | \(618308289484887346301250\) | \([2]\) | \(22937600\) | \(3.3009\) | |
110670.i2 | 110670j1 | \([1, 1, 0, 2986583, -6228017231]\) | \(2946098419096782416239079/18468116719344435937500\) | \(-18468116719344435937500\) | \([2]\) | \(11468800\) | \(2.9544\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 110670.i have rank \(1\).
Complex multiplication
The elliptic curves in class 110670.i do not have complex multiplication.Modular form 110670.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.