Properties

Label 110670.i
Number of curves $2$
Conductor $110670$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.i1 110670j2 \([1, 1, 0, -38019667, -81933755981]\) \(6077831506811167772920660921/618308289484887346301250\) \(618308289484887346301250\) \([2]\) \(22937600\) \(3.3009\)  
110670.i2 110670j1 \([1, 1, 0, 2986583, -6228017231]\) \(2946098419096782416239079/18468116719344435937500\) \(-18468116719344435937500\) \([2]\) \(11468800\) \(2.9544\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.i have rank \(1\).

Complex multiplication

The elliptic curves in class 110670.i do not have complex multiplication.

Modular form 110670.2.a.i

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + 2 q^{11} - q^{12} + 4 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.