Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 110670.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
110670.o1 | 110670n2 | \([1, 1, 0, -1452, -20286]\) | \(338915024892361/28802199510\) | \(28802199510\) | \([2]\) | \(139264\) | \(0.74839\) | |
110670.o2 | 110670n1 | \([1, 1, 0, 98, -1376]\) | \(102437538839/926307900\) | \(-926307900\) | \([2]\) | \(69632\) | \(0.40182\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 110670.o have rank \(1\).
Complex multiplication
The elliptic curves in class 110670.o do not have complex multiplication.Modular form 110670.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.