Properties

Label 110670.cc
Number of curves 11
Conductor 110670110670
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cc1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.cc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.cc1 110670ca1 [1,0,0,269,15265][1, 0, 0, 269, -15265] 2152185214031/1022060690702152185214031/102206069070 102206069070-102206069070 [][] 128160128160 0.792270.79227 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 110670.cc1 has rank 00.

Complex multiplication

The elliptic curves in class 110670.cc do not have complex multiplication.

Modular form 110670.2.a.cc

sage: E.q_eigenform(10)
 
q+q2+q3+q4q5+q6+q7+q8+q9q10+q123q13+q14q15+q16q17+q18+q19+O(q20)q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + q^{12} - 3 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display