Properties

Label 110670.cm
Number of curves 88
Conductor 110670110670
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cm1") E.isogeny_class()
 

Elliptic curves in class 110670.cm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.cm1 110670cp8 [1,0,0,258731208280,50654853221670100][1, 0, 0, -258731208280, -50654853221670100] 1915447099311696788795300773853656437121/23593307105659064574381840525001915447099311696788795300773853656437121/2359330710565906457438184052500 23593307105659064574381840525002359330710565906457438184052500 [2][2] 788529152788529152 5.10815.1081  
110670.cm2 110670cp4 [1,0,0,36426360100,2675908664482832][1, 0, 0, -36426360100, 2675908664482832] 5345287166085790635663218704920974401/2269782571559292619200005345287166085790635663218704920974401/226978257155929261920000 226978257155929261920000226978257155929261920000 [8][8] 197132288197132288 4.41494.4149  
110670.cm3 110670cp6 [1,0,0,16306945780,777467273017600][1, 0, 0, -16306945780, -777467273017600] 479558500651862026155270257138637121/16398477508430925116750756250000479558500651862026155270257138637121/16398477508430925116750756250000 1639847750843092511675075625000016398477508430925116750756250000 [2,2][2, 2] 394264576394264576 4.76154.7615  
110670.cm4 110670cp3 [1,0,0,2525695780,32101233232400][1, 0, 0, -2525695780, 32101233232400] 1781832302709884421209712638637121/5859757917079344140625000000001781832302709884421209712638637121/585975791707934414062500000000 585975791707934414062500000000585975791707934414062500000000 [2,4][2, 4] 197132288197132288 4.41494.4149  
110670.cm5 110670cp2 [1,0,0,2276760100,41806588162832][1, 0, 0, -2276760100, 41806588162832] 1305195379419707692723460338574401/2689153256312619264000000001305195379419707692723460338574401/268915325631261926400000000 268915325631261926400000000268915325631261926400000000 [2,8][2, 8] 9856614498566144 4.06834.0683  
110670.cm6 110670cp1 [1,0,0,126851620,800523760400][1, 0, 0, -126851620, 800523760400] 225741686871429146260559062081/146211902909299839467520000-225741686871429146260559062081/146211902909299839467520000 146211902909299839467520000-146211902909299839467520000 [8][8] 4928307249283072 3.72183.7218 Γ0(N)\Gamma_0(N)-optimal
110670.cm7 110670cp7 [1,0,0,5617316720,2712410599365100][1, 0, 0, 5617316720, -2712410599365100] 19602454118850102896203267379162879/318964309395094967206147448405250019602454118850102896203267379162879/3189643093950949672061474484052500 3189643093950949672061474484052500-3189643093950949672061474484052500 [2][2] 788529152788529152 5.10815.1081  
110670.cm8 110670cp5 [1,0,0,7272583340,220528019677472][1, 0, 0, 7272583340, 220528019677472] 42539250356844378683161410804461759/4562679268419742584228515625000042539250356844378683161410804461759/45626792684197425842285156250000 45626792684197425842285156250000-45626792684197425842285156250000 [4][4] 394264576394264576 4.76154.7615  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 110670.cm have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
331T1 - T
551T1 - T
771T1 - T
17171T1 - T
31311+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 18T+23T2 1 - 8 T + 23 T^{2} 1.23.ai
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 110670.cm do not have complex multiplication.

Modular form 110670.2.a.cm

Copy content sage:E.q_eigenform(10)
 
q+q2+q3+q4+q5+q6+q7+q8+q9+q104q11+q122q13+q14+q15+q16+q17+q18+4q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(116248164816184241682812482444212442824212841648421168416248161888424881)\left(\begin{array}{rrrrrrrr} 1 & 16 & 2 & 4 & 8 & 16 & 4 & 8 \\ 16 & 1 & 8 & 4 & 2 & 4 & 16 & 8 \\ 2 & 8 & 1 & 2 & 4 & 8 & 2 & 4 \\ 4 & 4 & 2 & 1 & 2 & 4 & 4 & 2 \\ 8 & 2 & 4 & 2 & 1 & 2 & 8 & 4 \\ 16 & 4 & 8 & 4 & 2 & 1 & 16 & 8 \\ 4 & 16 & 2 & 4 & 8 & 16 & 1 & 8 \\ 8 & 8 & 4 & 2 & 4 & 8 & 8 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.