Properties

Label 110670.j
Number of curves 22
Conductor 110670110670
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.j1 110670k2 [1,1,0,7217,37779][1, 1, 0, -7217, -37779] 41580322225044121/2354036558580041580322225044121/23540365585800 2354036558580023540365585800 [2][2] 442368442368 1.25581.2558  
110670.j2 110670k1 [1,1,0,1783,3579][1, 1, 0, 1783, -3579] 626321182331879/370523160000626321182331879/370523160000 370523160000-370523160000 [2][2] 221184221184 0.909200.90920 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.j have rank 11.

Complex multiplication

The elliptic curves in class 110670.j do not have complex multiplication.

Modular form 110670.2.a.j

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6q7q8+q9q10+6q11q124q13+q14q15+q16q17q18+6q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + 6 q^{11} - q^{12} - 4 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.