sage:E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 110670.j
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
110670.j1 |
110670k2 |
[1,1,0,−7217,−37779] |
41580322225044121/23540365585800 |
23540365585800 |
[2] |
442368 |
1.2558
|
|
110670.j2 |
110670k1 |
[1,1,0,1783,−3579] |
626321182331879/370523160000 |
−370523160000 |
[2] |
221184 |
0.90920
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 110670.j have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1−T |
7 | 1+T |
17 | 1+T |
31 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−6T+11T2 |
1.11.ag
|
13 |
1+4T+13T2 |
1.13.e
|
19 |
1−6T+19T2 |
1.19.ag
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 110670.j do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.