Properties

Label 110670.l
Number of curves $1$
Conductor $110670$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.l1 110670m1 \([1, 1, 0, -3307, 71869]\) \(-4001579756065081/2007996480\) \(-2007996480\) \([]\) \(120960\) \(0.73762\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 110670.l1 has rank \(1\).

Complex multiplication

The elliptic curves in class 110670.l do not have complex multiplication.

Modular form 110670.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - 5 q^{11} - q^{12} + q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display