Properties

Label 110670.l
Number of curves 11
Conductor 110670110670
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Elliptic curves in class 110670.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.l1 110670m1 [1,1,0,3307,71869][1, 1, 0, -3307, 71869] 4001579756065081/2007996480-4001579756065081/2007996480 2007996480-2007996480 [][] 120960120960 0.737620.73762 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 110670.l1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551T1 - T
771T1 - T
17171+T1 + T
31311+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 1T+13T2 1 - T + 13 T^{2} 1.13.ab
1919 1+2T+19T2 1 + 2 T + 19 T^{2} 1.19.c
2323 18T+23T2 1 - 8 T + 23 T^{2} 1.23.ai
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 110670.l do not have complex multiplication.

Modular form 110670.2.a.l

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4+q5+q6+q7q8+q9q105q11q12+q13q14q15+q16q17q182q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - 5 q^{11} - q^{12} + q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display