sage:E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 110670.l
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
110670.l1 |
110670m1 |
[1,1,0,−3307,71869] |
−4001579756065081/2007996480 |
−2007996480 |
[] |
120960 |
0.73762
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 110670.l1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1−T |
7 | 1−T |
17 | 1+T |
31 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+5T+11T2 |
1.11.f
|
13 |
1−T+13T2 |
1.13.ab
|
19 |
1+2T+19T2 |
1.19.c
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 110670.l do not have complex multiplication.
sage:E.q_eigenform(10)