Properties

Label 110670.o
Number of curves 22
Conductor 110670110670
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.o1 110670n2 [1,1,0,1452,20286][1, 1, 0, -1452, -20286] 338915024892361/28802199510338915024892361/28802199510 2880219951028802199510 [2][2] 139264139264 0.748390.74839  
110670.o2 110670n1 [1,1,0,98,1376][1, 1, 0, 98, -1376] 102437538839/926307900102437538839/926307900 926307900-926307900 [2][2] 6963269632 0.401820.40182 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.o have rank 11.

Complex multiplication

The elliptic curves in class 110670.o do not have complex multiplication.

Modular form 110670.2.a.o

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6+q7q8+q9q102q11q12+4q13q14q15+q16+q17q18+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - 2 q^{11} - q^{12} + 4 q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.