Properties

Label 110670.r
Number of curves 22
Conductor 110670110670
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.r1 110670r2 [1,0,1,743879,246883502][1, 0, 1, -743879, 246883502] 45522884062522454024809/474307825950045522884062522454024809/4743078259500 47430782595004743078259500 [2][2] 11059201105920 1.86141.8614  
110670.r2 110670r1 [1,0,1,46379,3874502][1, 0, 1, -46379, 3874502] 11032511590267184809/113472717750000-11032511590267184809/113472717750000 113472717750000-113472717750000 [2][2] 552960552960 1.51481.5148 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.r have rank 11.

Complex multiplication

The elliptic curves in class 110670.r do not have complex multiplication.

Modular form 110670.2.a.r

sage: E.q_eigenform(10)
 
qq2+q3+q4q5q6q7q8+q9+q10+q12+2q13+q14q15+q16q17q18+6q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.