Properties

Label 110670.s
Number of curves 22
Conductor 110670110670
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 110670.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.s1 110670u2 [1,0,1,7379,195748][1, 0, 1, -7379, -195748] 44425429548608809/925996640625044425429548608809/9259966406250 92599664062509259966406250 [2][2] 368640368640 1.20301.2030  
110670.s2 110670u1 [1,0,1,991,18304][1, 0, 1, 991, -18304] 107789012046071/208419277500107789012046071/208419277500 208419277500-208419277500 [2][2] 184320184320 0.856470.85647 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 110670.s have rank 11.

Complex multiplication

The elliptic curves in class 110670.s do not have complex multiplication.

Modular form 110670.2.a.s

sage: E.q_eigenform(10)
 
qq2+q3+q4q5q6+q7q8+q9+q106q11+q126q13q14q15+q16q17q18+2q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 6 q^{11} + q^{12} - 6 q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.