Properties

Label 110670a
Number of curves $4$
Conductor $110670$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 110670a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.d4 110670a1 \([1, 1, 0, -2005633, 86874613]\) \(892233346660440794027929/513015324982609182720\) \(513015324982609182720\) \([2]\) \(6578176\) \(2.6635\) \(\Gamma_0(N)\)-optimal
110670.d2 110670a2 \([1, 1, 0, -22977153, 42285767157]\) \(1341567071464214185939392409/3566818114559646105600\) \(3566818114559646105600\) \([2, 2]\) \(13156352\) \(3.0101\)  
110670.d3 110670a3 \([1, 1, 0, -14099073, 75331756533]\) \(-309952709923399776210900889/2272556962862968508160000\) \(-2272556962862968508160000\) \([2]\) \(26312704\) \(3.3567\)  
110670.d1 110670a4 \([1, 1, 0, -367399553, 2710388330997]\) \(5484532125809566566005365594009/38922235338282670080\) \(38922235338282670080\) \([2]\) \(26312704\) \(3.3567\)  

Rank

sage: E.rank()
 

The elliptic curves in class 110670a have rank \(0\).

Complex multiplication

The elliptic curves in class 110670a do not have complex multiplication.

Modular form 110670.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} - q^{12} + 6 q^{13} + q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.