E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 110670a
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
110670.d4 |
110670a1 |
[1,1,0,−2005633,86874613] |
892233346660440794027929/513015324982609182720 |
513015324982609182720 |
[2] |
6578176 |
2.6635
|
Γ0(N)-optimal |
110670.d2 |
110670a2 |
[1,1,0,−22977153,42285767157] |
1341567071464214185939392409/3566818114559646105600 |
3566818114559646105600 |
[2,2] |
13156352 |
3.0101
|
|
110670.d3 |
110670a3 |
[1,1,0,−14099073,75331756533] |
−309952709923399776210900889/2272556962862968508160000 |
−2272556962862968508160000 |
[2] |
26312704 |
3.3567
|
|
110670.d1 |
110670a4 |
[1,1,0,−367399553,2710388330997] |
5484532125809566566005365594009/38922235338282670080 |
38922235338282670080 |
[2] |
26312704 |
3.3567
|
|
The elliptic curves in class 110670a have
rank 0.
The elliptic curves in class 110670a do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.