Properties

Label 110670a
Number of curves 44
Conductor 110670110670
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 110670a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110670.d4 110670a1 [1,1,0,2005633,86874613][1, 1, 0, -2005633, 86874613] 892233346660440794027929/513015324982609182720892233346660440794027929/513015324982609182720 513015324982609182720513015324982609182720 [2][2] 65781766578176 2.66352.6635 Γ0(N)\Gamma_0(N)-optimal
110670.d2 110670a2 [1,1,0,22977153,42285767157][1, 1, 0, -22977153, 42285767157] 1341567071464214185939392409/35668181145596461056001341567071464214185939392409/3566818114559646105600 35668181145596461056003566818114559646105600 [2,2][2, 2] 1315635213156352 3.01013.0101  
110670.d3 110670a3 [1,1,0,14099073,75331756533][1, 1, 0, -14099073, 75331756533] 309952709923399776210900889/2272556962862968508160000-309952709923399776210900889/2272556962862968508160000 2272556962862968508160000-2272556962862968508160000 [2][2] 2631270426312704 3.35673.3567  
110670.d1 110670a4 [1,1,0,367399553,2710388330997][1, 1, 0, -367399553, 2710388330997] 5484532125809566566005365594009/389222353382826700805484532125809566566005365594009/38922235338282670080 3892223533828267008038922235338282670080 [2][2] 2631270426312704 3.35673.3567  

Rank

sage: E.rank()
 

The elliptic curves in class 110670a have rank 00.

Complex multiplication

The elliptic curves in class 110670a do not have complex multiplication.

Modular form 110670.2.a.a

sage: E.q_eigenform(10)
 
qq2q3+q4q5+q6q7q8+q9+q10+4q11q12+6q13+q14+q15+q16+q17q18+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} - q^{12} + 6 q^{13} + q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.