Properties

Label 11109.f
Number of curves $1$
Conductor $11109$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 11109.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11109.f1 11109d1 \([1, 0, 1, -48415, 4073417]\) \(160261033/1029\) \(80582003854149\) \([]\) \(39744\) \(1.5049\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 11109.f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 11109.f do not have complex multiplication.

Modular form 11109.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} - 3 q^{5} + q^{6} - q^{7} - 3 q^{8} + q^{9} - 3 q^{10} - 2 q^{11} - q^{12} - q^{14} - 3 q^{15} - q^{16} + q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display