Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-2326184142x-43184119407564\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-2326184142xz^2-43184119407564z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3014734648707x-2014753054059578754\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(6996409804533344795784282062906976115685293541090118077792677481521744898824956341948420389027529243362355394144437308365756742128503143382509094070546902972840790401877668975/125497966090630596192190099740585100188948813213759943286340035734525663240912348233389602276999588311096369538734689531536603611246430342981635668205316837247825604104881, 854203150932830263075905593409543125484607764898592251883306775348081740339765606281291117062203946576785576151884920022128714274686908936317582762572740194005992339476217699135894589116129158627297170191381920684339163227338739732164320819266006641627307678999/1405901942816196429865092410607312454628190087502355293557351544334208304608342112959247303167258874715446630895292819695383314562648186104975987863918462010779633673778709442051114949515013615715805360838607658354514701340707810140876978790353092918375529)$ | $403.00033034405929621846242365$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 111090 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 23^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-262014822331562022965760$ | = | $-1 \cdot 2^{9} \cdot 3 \cdot 5 \cdot 7^{7} \cdot 23^{10} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( -\frac{33602966923620213529}{6324810240} \) | = | $-1 \cdot 2^{-9} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-7} \cdot 23^{2} \cdot 31^{3} \cdot 61^{3} \cdot 211^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8863523513631375804957733745$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2734405047555128381568126813$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.025108410651787$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.568725957216232$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $403.00033034405929621846242365$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.010869474084102693366379149467$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $4.3804016465595767841807972639 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 4.380401647 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.010869 \cdot 403.000330 \cdot 1}{1^2} \approx 4.380401647$
Modular invariants
Modular form 111090.2.a.l
For more coefficients, see the Downloads section to the right.
Modular degree: | 61205760 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$7$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$23$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 631 & 2 \\ 631 & 3 \end{array}\right),\left(\begin{array}{rr} 839 & 2 \\ 838 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 2 \\ 337 & 3 \end{array}\right),\left(\begin{array}{rr} 281 & 2 \\ 281 & 3 \end{array}\right),\left(\begin{array}{rr} 241 & 2 \\ 241 & 3 \end{array}\right),\left(\begin{array}{rr} 421 & 2 \\ 421 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 839 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$35672555520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 55545 = 3 \cdot 5 \cdot 7 \cdot 23^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 18515 = 5 \cdot 7 \cdot 23^{2} \) |
$5$ | split multiplicative | $6$ | \( 22218 = 2 \cdot 3 \cdot 7 \cdot 23^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 15870 = 2 \cdot 3 \cdot 5 \cdot 23^{2} \) |
$23$ | additive | $112$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 111090.l consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 111090.c1, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.444360.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.165862880064000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | split | nonsplit | ord | ord | ss | ord | add | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 2 | 1 | 2 | 1 | 1 | 1 | 1,1 | 1 | - | 3 | 3 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.