Properties

Label 111600ck2
Conductor 111600111600
Discriminant 6.004×1020-6.004\times 10^{20}
j-invariant 722458663317476656000 \frac{722458663317}{476656000}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+2018925x+413255250y^2=x^3+2018925x+413255250 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+2018925xz2+413255250z3y^2z=x^3+2018925xz^2+413255250z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+2018925x+413255250y^2=x^3+2018925x+413255250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 2018925, 413255250])
 
gp: E = ellinit([0, 0, 0, 2018925, 413255250])
 
magma: E := EllipticCurve([0, 0, 0, 2018925, 413255250]);
 
oscar: E = elliptic_curve([0, 0, 0, 2018925, 413255250])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  111600 111600  = 243252312^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  600449283072000000000-600449283072000000000 = 12193959313-1 \cdot 2^{19} \cdot 3^{9} \cdot 5^{9} \cdot 31^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  722458663317476656000 \frac{722458663317}{476656000}  = 27365331399732^{-7} \cdot 3^{6} \cdot 5^{-3} \cdot 31^{-3} \cdot 997^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.67582196107351856958268841522.6758219610735185695826884152
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.353996607795440804318642699440.35399660779544080431864269944
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97492046213139270.9749204621313927
Szpiro ratio: σm\sigma_{m} ≈ 4.7465685802430874.746568580243087

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.102111994620398054042600470130.10211199462039805404260047013
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22221 2^{2}\cdot2\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.63379191392636886468160752211.6337919139263688646816075221
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.633791914L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1021121.00000016121.633791914\displaystyle 1.633791914 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.102112 \cdot 1.000000 \cdot 16}{1^2} \approx 1.633791914

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 111600.2.a.cq

qq73q11+4q13+6q17+q19+O(q20) q - q^{7} - 3 q^{11} + 4 q^{13} + 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3483648
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I11I_{11}^{*} additive -1 4 19 7
33 22 IIIIII^{*} additive 1 2 9 0
55 22 I3I_{3}^{*} additive 1 2 9 3
3131 11 I3I_{3} nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[929, 3714, 2787, 3701], [4, 3, 9, 7], [1801, 6, 1683, 19], [1861, 6, 1863, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(3720)).subgroup(gens)
 
Gens := [[929, 3714, 2787, 3701], [4, 3, 9, 7], [1801, 6, 1683, 19], [1861, 6, 1863, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(3720))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3720=233531 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 , index 1616, genus 00, and generators

(929371427873701),(4397),(18016168319),(18616186319),(2634107924773546),(3715637147),(743371422293701),(1601),(34811),(1061)\left(\begin{array}{rr} 929 & 3714 \\ 2787 & 3701 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1801 & 6 \\ 1683 & 19 \end{array}\right),\left(\begin{array}{rr} 1861 & 6 \\ 1863 & 19 \end{array}\right),\left(\begin{array}{rr} 2634 & 1079 \\ 2477 & 3546 \end{array}\right),\left(\begin{array}{rr} 3715 & 6 \\ 3714 & 7 \end{array}\right),\left(\begin{array}{rr} 743 & 3714 \\ 2229 & 3701 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3720])K:=\Q(E[3720]) is a degree-19747307520001974730752000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3720Z)\GL_2(\Z/3720\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 2325=35231 2325 = 3 \cdot 5^{2} \cdot 31
33 additive 22 400=2452 400 = 2^{4} \cdot 5^{2}
55 additive 1818 4464=243231 4464 = 2^{4} \cdot 3^{2} \cdot 31
3131 nonsplit multiplicative 3232 3600=243252 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 111600ck consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 2790f1, its twist by 6060.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{15}) Z/3Z\Z/3\Z not in database
33 3.1.3720.1 Z/2Z\Z/2\Z not in database
66 6.0.51478848000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.23328000.1 Z/3Z\Z/3\Z not in database
66 6.2.3321216000.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 12.0.4897760256000000.3 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.62274348389010145441314008958293376000000000000000.1 Z/9Z\Z/9\Z not in database
1818 18.0.103835330364003490298068992000000000.2 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add ord ord ord ord ord ord ss nonsplit ord ss ord ord
λ\lambda-invariant(s) - - - 0 0 0 0 2 0 0,0 0 0 0,0 0 0
μ\mu-invariant(s) - - - 0 0 0 0 0 0 0,0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.