Properties

Label 11197a1
Conductor 1119711197
Discriminant 1119711197
j-invariant 2034641711197 \frac{20346417}{11197}
CM no
Rank 33
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x26xy^2+xy+y=x^3-x^2-6x Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z6xz2y^2z+xyz+yz^2=x^3-x^2z-6xz^2 Copy content Toggle raw display (dehomogenize, simplify)
y2=x391x74y^2=x^3-91x-74 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -6, 0])
 
gp: E = ellinit([1, -1, 1, -6, 0])
 
magma: E := EllipticCurve([1, -1, 1, -6, 0]);
 
oscar: E = elliptic_curve([1, -1, 1, -6, 0])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ\Z \oplus \Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(0,0)(0, 0)0.865716384609029695260093425800.86571638460902969526009342580\infty
(1,2)(-1, 2)1.01734028025134211941265864821.0173402802513421194126586482\infty
(2,1)(-2, 1)1.14086261134087072244061769181.1408626113408707224406176918\infty

Integral points

(2,1) \left(-2, 1\right) , (2,0) \left(-2, 0\right) , (1,2) \left(-1, 2\right) , (1,2) \left(-1, -2\right) , (0,0) \left(0, 0\right) , (0,1) \left(0, -1\right) , (3,0) \left(3, 0\right) , (3,4) \left(3, -4\right) , (4,3) \left(4, 3\right) , (4,8) \left(4, -8\right) , (6,9) \left(6, 9\right) , (6,16) \left(6, -16\right) , (8,16) \left(8, 16\right) , (8,25) \left(8, -25\right) , (10,24) \left(10, 24\right) , (10,35) \left(10, -35\right) , (31,154) \left(31, 154\right) , (31,186) \left(31, -186\right) , (50,325) \left(50, 325\right) , (50,376) \left(50, -376\right) , (95,874) \left(95, 874\right) , (95,970) \left(95, -970\right) , (259,4032) \left(259, 4032\right) , (259,4292) \left(259, -4292\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  11197 11197  = 1119711197
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1119711197 = 1119711197
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2034641711197 \frac{20346417}{11197}  = 33731331119713^{3} \cdot 7^{3} \cdot 13^{3} \cdot 11197^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.53244084502045433184764028487-0.53244084502045433184764028487
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.53244084502045433184764028487-0.53244084502045433184764028487
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.70346842530310240.7034684253031024
Szpiro ratio: σm\sigma_{m} ≈ 1.80496527920132641.8049652792013264

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 3 3
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 3 3
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.868421953693726649004848601860.86842195369372664900484860186
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.30667107386752022053112139083.3066710738675202205311213908
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(3)(E,1)/3! L^{(3)}(E,1)/3! ≈ 2.87158575419056501661600613942.8715857541905650166160061394
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.871585754L(3)(E,1)/3!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.3066710.8684221122.871585754\displaystyle 2.871585754 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.306671 \cdot 0.868422 \cdot 1}{1^2} \approx 2.871585754

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   11197.2.a.a

qq23q3q42q5+3q65q7+3q8+6q9+2q104q11+3q127q13+5q14+6q15q162q176q185q19+O(q20) q - q^{2} - 3 q^{3} - q^{4} - 2 q^{5} + 3 q^{6} - 5 q^{7} + 3 q^{8} + 6 q^{9} + 2 q^{10} - 4 q^{11} + 3 q^{12} - 7 q^{13} + 5 q^{14} + 6 q^{15} - q^{16} - 2 q^{17} - 6 q^{18} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2080
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There is only one prime pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1119711197 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[22393, 2, 22392, 3], [1, 0, 2, 1], [1, 2, 0, 1], [11199, 2, 11199, 3], [1, 1, 22393, 0]]
 
GL(2,Integers(22394)).subgroup(gens)
 
Gens := [[22393, 2, 22392, 3], [1, 0, 2, 1], [1, 2, 0, 1], [11199, 2, 11199, 3], [1, 1, 22393, 0]];
 
sub<GL(2,Integers(22394))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 22394=211197 22394 = 2 \cdot 11197 , index 22, genus 00, and generators

(223932223923),(1021),(1201),(111992111993),(11223930)\left(\begin{array}{rr} 22393 & 2 \\ 22392 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11199 & 2 \\ 11199 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 22393 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[22394])K:=\Q(E[22394]) is a degree-4715081193553948847150811935539488 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/22394Z)\GL_2(\Z/22394\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
1119711197 nonsplit multiplicative 1119811198 1 1

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 11197a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.11197.1 Z/2Z\Z/2\Z not in database
66 6.6.1403799342373.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 11197
Reduction type ord ss ord ord ord ord ord ord ord ss ord ord ord ord ord nonsplit
λ\lambda-invariant(s) 3 3,3 3 9 3 3 3 3 3 3,3 3 3 3 3 3 ?
μ\mu-invariant(s) 0 0,0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 ?

An entry ? indicates that the invariants have not yet been computed.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.