Properties

Label 11200.cz
Number of curves 66
Conductor 1120011200
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cz1")
 
E.isogeny_class()
 

Elliptic curves in class 11200.cz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11200.cz1 11200co6 [0,1,0,4368833,3516221537][0, -1, 0, -4368833, 3516221537] 2251439055699625/250882251439055699625/25088 102760448000000102760448000000 [2][2] 165888165888 2.25752.2575  
11200.cz2 11200co5 [0,1,0,272833,55101537][0, -1, 0, -272833, 55101537] 548347731625/1835008-548347731625/1835008 7516192768000000-7516192768000000 [2][2] 8294482944 1.91101.9110  
11200.cz3 11200co4 [0,1,0,56833,4293537][0, -1, 0, -56833, 4293537] 4956477625/9411924956477625/941192 38551224320000003855122432000000 [2][2] 5529655296 1.70821.7082  
11200.cz4 11200co2 [0,1,0,16833,834463][0, -1, 0, -16833, -834463] 128787625/98128787625/98 401408000000401408000000 [2][2] 1843218432 1.15891.1589  
11200.cz5 11200co1 [0,1,0,833,18463][0, -1, 0, -833, -18463] 15625/28-15625/28 114688000000-114688000000 [2][2] 92169216 0.812360.81236 Γ0(N)\Gamma_0(N)-optimal
11200.cz6 11200co3 [0,1,0,7167,389537][0, -1, 0, 7167, 389537] 9938375/219529938375/21952 89915392000000-89915392000000 [2][2] 2764827648 1.36171.3617  

Rank

sage: E.rank()
 

The elliptic curves in class 11200.cz have rank 11.

Complex multiplication

The elliptic curves in class 11200.cz do not have complex multiplication.

Modular form 11200.2.a.cz

sage: E.q_eigenform(10)
 
q+2q3+q7+q94q136q17+2q19+O(q20)q + 2 q^{3} + q^{7} + q^{9} - 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1239186216189336136291831261896213632631)\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.