Properties

Label 11200cy
Number of curves 22
Conductor 1120011200
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cy1")
 
E.isogeny_class()
 

Elliptic curves in class 11200cy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11200.t2 11200cy1 [0,1,0,7,7][0, -1, 0, 7, 7] 4096/74096/7 56000-56000 [][] 640640 0.40395-0.40395 Γ0(N)\Gamma_0(N)-optimal
11200.t1 11200cy2 [0,1,0,593,5393][0, -1, 0, -593, -5393] 2887553024/16807-2887553024/16807 134456000-134456000 [][] 32003200 0.400770.40077  

Rank

sage: E.rank()
 

The elliptic curves in class 11200cy have rank 11.

Complex multiplication

The elliptic curves in class 11200cy do not have complex multiplication.

Modular form 11200.2.a.cy

sage: E.q_eigenform(10)
 
qq3q72q93q11+q137q17+O(q20)q - q^{3} - q^{7} - 2 q^{9} - 3 q^{11} + q^{13} - 7 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.