Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 112632.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
112632.o1 | 112632v1 | \([0, 1, 0, -3160, -69376]\) | \(497005996/507\) | \(3560973312\) | \([2]\) | \(211200\) | \(0.75126\) | \(\Gamma_0(N)\)-optimal |
112632.o2 | 112632v2 | \([0, 1, 0, -2400, -102816]\) | \(-108879878/257049\) | \(-3610826938368\) | \([2]\) | \(422400\) | \(1.0978\) |
Rank
sage: E.rank()
The elliptic curves in class 112632.o have rank \(1\).
Complex multiplication
The elliptic curves in class 112632.o do not have complex multiplication.Modular form 112632.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.